scholarly journals Modelling individual tree basal area growth of Blue pine (Pinus wallichiana) for Mustang district in Nepal

2012 ◽  
Vol 8 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Bishnu Hari Wagle ◽  
Ram P. Sharma
1973 ◽  
Vol 3 (4) ◽  
pp. 495-500 ◽  
Author(s):  
James A. Moore ◽  
Carl A. Budelsky ◽  
Richard C. Schlesinger

A new competition index, modified Area Potentially Available (APA), was tested in a complex unevenaged stand composed of 19 different hardwood species. APA considers tree size, spatial distribution, and distance relationships in quantifying intertree competition and exhibits a strong correlation with individual tree basal area growth. The most important characteristic of APA is its potential for evaluating silvicultural practices.


2000 ◽  
Vol 24 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Michael M. Huebschmann ◽  
Lawrence R. Gering ◽  
Thomas B. Lynch ◽  
Onesphore Bitoki ◽  
Paul A. Murphy

Abstract A system of equations modeling the growth and development of uneven-aged shortleaf pine (Pinus echinata Mill.) stands is described. The prediction system consists of two main components: (1) a distance-independent, individual-tree simulator containing equations that forecast ingrowth, basal-area growth, probability of survival, total and merchantable heights, and total and merchantable volumes and weights of shortleaf pine trees; and (2) stand-level equations that predict hardwood ingrowth, basal-area growth, and mortality. These equations were combined into a computer simulation program that forecasts future states of uneven-aged shortleaf pine stands. Based on comparisons of observed and predicted stand conditions in shortleaf pine permanent forest inventory plots and examination of the growth patterns of hypothetical stands, the simulator makes acceptable forecasts of stand attributes. South. J. Appl. For. 24(2):112-120.


2004 ◽  
Vol 80 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Lianjun Zhang ◽  
Changhui Peng ◽  
Qinglai Dang

Individual-tree models of five-year basal area growth were developed for jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP) in northern Ontario. Tree growth data were collected from long-term permanent plots of pure and mixed stands of the two species. The models were fitted using mixed model methods due to correlated remeasurements of tree growth over time. Since the data covered a wide range of stand ages, stand conditions and tree sizes, serious heterogeneous variances existed in the data. Therefore, the coefficients of the final models were obtained using weighted regression techniques. The models for the two species were evaluated across 4-cm diameter classes using independent data. The results indicated (1) the models of jack pine and black spruce produced similar prediction errors and biases for intermediate-sized trees (12–28 cm in tree diameter), (2) both models yielded relatively large errors and biases for larger trees (> 28 cm) than those for smaller trees, and (3) the jack pine model produced much larger errors and biases for small-sized trees (< 12 cm) than did the black spruce model. Key words: mixed models, repeated measures, model validation


2004 ◽  
Vol 174 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
J.J Colbert ◽  
Michael Schuckers ◽  
Desta Fekedulegn ◽  
James Rentch ◽  
Máirtı́n MacSiúrtáin ◽  
...  

2006 ◽  
Vol 36 (4) ◽  
pp. 961-971 ◽  
Author(s):  
Veronica I Emhart ◽  
Timothy A Martin ◽  
Timothy L White ◽  
Dudley A Huber

We quantified basal area increment phenology over a 2-year period in one loblolly pine (Pinus taeda L.) and four slash pine (Pinus elliottii Engelm. var. elliottii) full-sib families propagated as rooting cuttings. In 2002, basal area growth started in March and stopped in October for both species, while in 2003, initiation and cessation occurred 2 weeks earlier for all families. In both years, peaks in basal area increment occurred in short (2–3 week) periods in the early spring for all families, followed by linear basal area growth until cessation. While there were significant size differences among taxa (species and families) at age 6 and 7 years, genetic differences in basal area growth rate were only expressed during short, discrete time periods primarily in the spring and fall. Basal area growth rate increased during periods when water soil availability increased (up to 300 mm), but an excess in water availability in the soil had a negative impact on growth. Within-family individual-tree broad-sense heritabilities ranged from 0.01 to 0.37 for all traits. In general, heritabilities were higher for growth traits than for phenological traits for all families. Both the strength and direction of correlation estimates of phenological traits with growth rate varied across families and years.


1999 ◽  
Vol 29 (5) ◽  
pp. 621-629 ◽  
Author(s):  
Hannu Hökkä ◽  
Arthur Groot

A basal area growth model was developed to predict the growth of individual trees in second-growth black spruce (Picea mariana (Mill.) BSP) stands on northeastern Ontario peatlands. The data were derived from stem analysis trees collected in 1985 and 1986 from stands harvested 47-68 years earlier. For a period starting from the date of data collection and going back to 10 years from the harvesting, tree basal area growth, diameters, and stand characteristics were retrospectively calculated at 5-year intervals. To estimate previous mortality, self-thinning relationships for black spruce were applied. In the model, 5-year basal area growth of a tree was expressed as a function of tree diameter, stand-level competition, tree-level competition, and peat thickness. There was considerable change in the growth-size relationship over time. A random parameter approach was applied in model construction to account for the spatial and temporal correlations of the observations. The proposed model explicitly incorporates factors normally included in a "random error" term and, therefore, should provide more sensitive tests of the contributions of the various factors to growth prediction. The estimated model showed only slight bias against the modeling data and the predicted stand basal area development was comparable with that given in other studies.


1996 ◽  
Vol 26 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Paul A. Murphy ◽  
Michael G. Shelton

Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a modifier component. The growth component can be any function that approximates tree growth patterns, and the logistic function is chosen as the modifier component. This approach can be adapted to a variety of stand conditions, and its application is demonstrated using data from an uneven-aged loblolly pine (Pinustaeda L.) study located in Arkansas and Louisiana.


2005 ◽  
Vol 35 (10) ◽  
pp. 2394-2402 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire ◽  
Alan Kanaskie ◽  
Jeff Brandt

Concern has risen about the degree to which Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands with severe infections of Swiss needle cast (SNC) respond to thinning. A retrospective study was established in the fall of 2001 to assess the growth of Douglas-fir stands that were commercially thinned between 4 and 10 years ago. Current SNC infection levels in these stands ranged from severe to very light. Past volume and basal area growth declined with increasing severity of SNC, as measured by current foliage retention and crown length / sapwood ratio. As has been observed in many other studies, thinning to lower residual stock reduced stand level growth; however, individual tree growth increased with lower residual stand density. The ratio of growth in successive periods and analysis of annual basal area growth since thinning suggested that trees did respond to thinning, although less so as SNC increased. A positive response to thinning, regardless of infection level, was confirmed by an analysis of annual trends in basal area growth over the first 5 years after thinning.


2000 ◽  
Vol 30 (4) ◽  
pp. 613-623 ◽  
Author(s):  
Guanghong Shen ◽  
James A Moore ◽  
Charles R Hatch

Individual tree basal area increment models for nitrogen fertilized stands were developed using data from permanent research plots located throughout the Inland Northwest. Results show that tree size, stand density, habitat type, and rock type significantly interact to affect individual tree basal area growth response to nitrogen fertilization. Suppressed trees growing on moist habitat types and all rock types, except metasedimentary, exhibited greater relative response than did dominant or codominant trees growing in the same stand. However, suppressed trees growing on dry sites or on soils derived from granite rocks did not show different relative response than dominant or codominant trees growing in the same stand. This study quantitatively demonstrates that individual tree competitive relationships are significantly affected by rock type. Rock types proved to be useful in representing broad differences in a site's nutrient environment. Incorporating the new equations into individual tree growth and yield simulators would provide better representation of N fertilization response differences within a stand.


1998 ◽  
Vol 22 (3) ◽  
pp. 184-192 ◽  
Author(s):  
Paul A. Murphy ◽  
David L. Graney

Abstract Models were developed for individual-tree basal area growth, survival, and total heights for different species of upland hardwoods in the Boston Mountains of north Arkansas. Data used were from 87 permanent plots located in an array of different sites and stand ages; the plots were thinned to different stocking levels and included unthinned controls. To test these three tree models, stand development for 5 and 10 yr were simulated in terms of stand basal area/ac, numbers of trees/ac, and quadratic mean diameter. Percent mean differences for the three variables indicated no serious biases. A long-term projection of 100 yr to test model reasonableness showed development that would be consistent with these stands. These equations provide forest managers the first upland hardwood individual-tree growth models specifically for this region. South. J. Appl. For. 22(3):184-192.


Sign in / Sign up

Export Citation Format

Share Document