scholarly journals PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models

2020 ◽  
Vol 9 (1) ◽  
pp. 1721810 ◽  
Author(s):  
Takahiro Yamazaki ◽  
Aitziber Buqué ◽  
Tyler D. Ames ◽  
Lorenzo Galluzzi
Oncotarget ◽  
2015 ◽  
Vol 6 (36) ◽  
pp. 39036-39049 ◽  
Author(s):  
Bangwen Xie ◽  
Marieke A. Stammes ◽  
Pieter B.A.A. van Driel ◽  
Luis J. Cruz ◽  
Vicky T. Knol-Blankevoort ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678 ◽  
Author(s):  
Adrien Procureur ◽  
Audrey Simonaggio ◽  
Jean-Emmanuel Bibault ◽  
Stéphane Oudard ◽  
Yann-Alexandre Vano

The immunogenic cell death (ICD) is defined as a regulated cell death able to induce an adaptive immunity. It depends on different parameters including sufficient antigenicity, adjuvanticity and favorable microenvironment conditions. Radiation therapy (RT), a pillar of modern cancer treatment, is being used in many tumor types in curative, (neo) adjuvant, as well as metastatic settings. The anti-tumor effects of RT have been traditionally attributed to the mitotic cell death resulting from the DNA damages triggered by the release of reactive oxygen species. Recent evidence suggests that RT may also exert its anti-tumor effect by recruiting tumor-specific immunity. RT is able to induce the release of tumor antigens, to act as an immune adjuvant and thus to synergize with the anti-tumor immunity. The advent of new efficient immunotherapeutic agents, such as immune checkpoint inhibitors (ICI), in multiple tumor types sheds new light on the opportunity of combining RT and ICI. Here, we will describe the biological and radiobiological rationale of the RT-induced ICD. We will then focus on the interest to combine RT and ICI, from bench to bedside, and summarize the clinical data existing with this combination. Finally, RT technical adaptations to optimize the ICD induction will be discussed.


2017 ◽  
Vol 7 (1) ◽  
pp. e1377873 ◽  
Author(s):  
Katherine E. Lewis ◽  
Mark J. Selby ◽  
Gregg Masters ◽  
Jose Valle ◽  
Gennaro Dito ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22303 ◽  
Author(s):  
Jonas Persson ◽  
Ines Beyer ◽  
Roma Yumul ◽  
ZongYi Li ◽  
Hans-Peter Kiem ◽  
...  

2012 ◽  
Vol 131 (11) ◽  
pp. 2719-2720
Author(s):  
C. Braumann ◽  
R. W. Pfirrmann

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A884-A884
Author(s):  
Li Peng ◽  
Lizhi Cao ◽  
Sujata Nerle ◽  
Robert LeBlanc ◽  
Abhishek Das ◽  
...  

BackgroundSialoglycans, a type of glycans with a terminal sialic acid, have emerged as a critical glyco-immune checkpoint that impairs antitumor response by inhibiting innate and adaptive immunity. Upregulation of sialoglycans on tumors has been observed for decades and correlates with poor clinical outcomes across many tumor types. We previously showed that targeted desialylation of tumors using a bifunctional sialidase x antibody molecule, consisting of sialidase and a tumor-associated antigen (TAA)-targeting antibody, has led to robust single-agent efficacy in mouse tumor models. In addition to tumor cells, most immune cells present substantially more abundant sialoglycans than non-hematological healthy cells, which may also contribute to immunosuppression. Therefore, we studied the impact of immune cell desialylation and evaluated the therapeutic potential of a newly developed sialidase-Fc fusion (Bi-Sialidase), which lacks a TAA-targeting moiety and consists of engineered human neuraminidase 2 (Neu2) and human IgG1 Fc region, in preclinical mouse tumor models.MethodsThe first generation Neu2 variant was further optimized to improve titers and stability to constructed Bi-Sialidase. Bi-Sialidase’s desialylation potency and impact on immune responses were studied in vitro using various human immune functional assays, including T-cell activation, allogeneic mixed lymphocyte reaction, antibody-dependent cellular cytotoxicity, macrophages polarization/activation, neutrophil activation, and peripheral blood mononuclear cell (PBMC) cytokine release assays. We evaluated its antitumor efficacy in mouse tumor models. Bi-Sialidase’s safety profile was characterized by conducting rat and non-human primate (NHP) toxicology studies.ResultsThe optimized Bi-Sialidase achieved a titer of 2.5 g/L from a 15-day fed-batch Chinese hamster ovary cell culture; in contrast, the wild-type and first-generation Neu2 had no production or a low titer (<0.1 g/L) under similar conditions, respectively. We demonstrated that Bi-Sialidase led to dose-dependent desialylation of immune cells and potentiated T-cell immunity, without impacting NK, macrophage, or neutrophil activation by desialylating immune cells. Activated and exhausted T cells upregulated surface sialoglycans and Bi-Sialidase-mediated desialylation reinvigorated exhausted-like T cells as measured by IFNg production. Bi-Sialidase treatment also enhanced DC priming and activation of naïve T cells by desialylating both T cells and DCs. Furthermore, Bi-Sialidase showed single-agent antitumor activity in multiple mouse tumor models, including MC38, CT26, A20, and B16F10. Importantly, Bi-Sialidase did not cause cytokine release in human PBMC assays and was tolerated to up to 100 mg/kg in rats and NHPs, demonstrating a wide safety margin.ConclusionsBi-Sialidase with an optimized Neu2 offers a novel immunomodulatory approach to enhancing T-cell immunity by desialylating immunosuppressive sialoglycans for cancer treatment.


2012 ◽  
Vol 122 (4) ◽  
pp. 1541-1552 ◽  
Author(s):  
Cynthia X. Ma ◽  
Shirong Cai ◽  
Shunqiang Li ◽  
Christine E. Ryan ◽  
Zhanfang Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document