mouse tumor models
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
pp. 101038
Author(s):  
Maike Effern ◽  
Nicole Glodde ◽  
Emma Bawden ◽  
Jana Liebing ◽  
Daniel Hinze ◽  
...  

Immunotherapy ◽  
2021 ◽  
Author(s):  
Constanza Savid-Frontera ◽  
Maria E Viano ◽  
Natalia S Baez ◽  
Della Reynolds ◽  
Mariana Matellon ◽  
...  

Aim: The aim of this work is to utilize a gene expression procedure to safely express systemic IL-12 and evaluate its effects in mouse tumor models. Materials & methods: Secondary lymphoid organs and tumors from EL4 and B16 tumor-bearing mice were analyzed by supervised and unsupervised methods. Results: IL-12 cDNA induced systemic IL-12 protein levels lower than the tolerated dose in patients. Control of tumor growth was observed in subcutaneous B16 and EL4 tumors. Systemic IL-12 expression induced a higher frequency of both total tumor-infiltrated CD45+ cells and proliferative IFN-γ+CD8+ T cells along with a lower frequency of CD4+FOXP3+ and CD11b+Gr-1+ cells. Conclusion: This approach characterizes the systemic effects of IL-12, helping to improve treatment of metastases or solid tumors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A884-A884
Author(s):  
Li Peng ◽  
Lizhi Cao ◽  
Sujata Nerle ◽  
Robert LeBlanc ◽  
Abhishek Das ◽  
...  

BackgroundSialoglycans, a type of glycans with a terminal sialic acid, have emerged as a critical glyco-immune checkpoint that impairs antitumor response by inhibiting innate and adaptive immunity. Upregulation of sialoglycans on tumors has been observed for decades and correlates with poor clinical outcomes across many tumor types. We previously showed that targeted desialylation of tumors using a bifunctional sialidase x antibody molecule, consisting of sialidase and a tumor-associated antigen (TAA)-targeting antibody, has led to robust single-agent efficacy in mouse tumor models. In addition to tumor cells, most immune cells present substantially more abundant sialoglycans than non-hematological healthy cells, which may also contribute to immunosuppression. Therefore, we studied the impact of immune cell desialylation and evaluated the therapeutic potential of a newly developed sialidase-Fc fusion (Bi-Sialidase), which lacks a TAA-targeting moiety and consists of engineered human neuraminidase 2 (Neu2) and human IgG1 Fc region, in preclinical mouse tumor models.MethodsThe first generation Neu2 variant was further optimized to improve titers and stability to constructed Bi-Sialidase. Bi-Sialidase’s desialylation potency and impact on immune responses were studied in vitro using various human immune functional assays, including T-cell activation, allogeneic mixed lymphocyte reaction, antibody-dependent cellular cytotoxicity, macrophages polarization/activation, neutrophil activation, and peripheral blood mononuclear cell (PBMC) cytokine release assays. We evaluated its antitumor efficacy in mouse tumor models. Bi-Sialidase’s safety profile was characterized by conducting rat and non-human primate (NHP) toxicology studies.ResultsThe optimized Bi-Sialidase achieved a titer of 2.5 g/L from a 15-day fed-batch Chinese hamster ovary cell culture; in contrast, the wild-type and first-generation Neu2 had no production or a low titer (<0.1 g/L) under similar conditions, respectively. We demonstrated that Bi-Sialidase led to dose-dependent desialylation of immune cells and potentiated T-cell immunity, without impacting NK, macrophage, or neutrophil activation by desialylating immune cells. Activated and exhausted T cells upregulated surface sialoglycans and Bi-Sialidase-mediated desialylation reinvigorated exhausted-like T cells as measured by IFNg production. Bi-Sialidase treatment also enhanced DC priming and activation of naïve T cells by desialylating both T cells and DCs. Furthermore, Bi-Sialidase showed single-agent antitumor activity in multiple mouse tumor models, including MC38, CT26, A20, and B16F10. Importantly, Bi-Sialidase did not cause cytokine release in human PBMC assays and was tolerated to up to 100 mg/kg in rats and NHPs, demonstrating a wide safety margin.ConclusionsBi-Sialidase with an optimized Neu2 offers a novel immunomodulatory approach to enhancing T-cell immunity by desialylating immunosuppressive sialoglycans for cancer treatment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A813-A813
Author(s):  
Evelina Martinenaite ◽  
Mia Aaboe Jørgensen ◽  
Rasmus Erik Johansson Mortensen ◽  
Shamaila Munir Ahmad ◽  
Stine Emilie Weis-Banke ◽  
...  

BackgroundIO112 is an immune modulatory cancer therapy under preclinical development to target arginase-1-expressing tumor cells and immune inhibitory myeloid cells, such as myeloid derived suppressor cells (MDSCs), and tumor associated macrophages (TAMs). Arginase-1 acts as a metabolic immune regulator at the tumor site by reducing availability of L-arginine to the infiltrating immune cells thus reducing T cell functionality and proliferation. Previously, we demonstrated that IO112 triggers activation of spontaneous CD4+ and CD8+ T-cell responses against arginase-1, found in both cancer patients and healthy individuals.1 These T cells are present in the memory T cell compartment, and are activated in arginase-1 inducing conditions, such as presence of TH2 cytokines IL-4 or IL-13 in vitro.2 3 In this study we aimed to explore the role of arginase-1-specific T cells as immune modulators in immune homeostasis and tumor microenvironment for the development of IO112 immunomodulatory therapy.MethodsHuman arginase-1-specific T cells were isolated and expanded for functional characterization of reactivity against arginase-1 expressing target cells as well as subsequent phenotyping of the targeted arginase-1 positive cells. Syngeneic C57BL/6 mouse tumor models were used to assess the therapeutic efficacy of IO112.ResultsWe show that arginase-1-specific memory T cells specifically recognize arginase-1 expressing cells, such as mRNA transfected autologous dendritic cells (DCs) and B cells as well as M2 polarized macrophages in vitro. In addition, activated arginase-1-specific T cells produce pro-inflammatory cytokines IFNγ and TNFα. Secretion of TH1 cytokines by these T cells suggests that they may act as potent immune modulators in the tumor microenvironment, since many arginase-1 expressing myeloid cells are not terminally differentiated and they can be re-polarized to an immunostimulatory, M1-like phenotype. We also observed that targeting of M2-polarized arginase-1 expressing monocytic leukemia cell line THP-1 with arginase-1-specific CD4+ T cells induces upregulation of PD-L1 on the THP-1 cells. Furthermore, we demonstrate anti-tumor activity of IO112 in syngeneic mouse tumor models (B16 and MC38), both as monotherapy and in combination with anti-PD-1 treatment. The therapeutic effect was associated with increased immune infiltration in the IO112-treated mice compared to the control.ConclusionsWe demonstrate that arginase-1 specific T cells can influence the polarization of arginase-1-expressing immune cells. Our study provides evidence that IO112 immune therapy against arginase-1 is an attractive way of modulating the immune suppressive tumor microenvironment for therapeutic benefit. With this rationale, we are currently undertaking Investigational New Drug (IND) application enabling studies to explore this approach in a clinical setting.ReferencesMartinenaite E, Mortensen REJ, Hansen M, Holmström MO, Ahmad SM, Jørgensen NGD, Met Ö, Donia M, Svane IM, Andersen MH. Frequent adaptive immune responses against arginase-1. Oncoimmunology 2018;7(3):e1404215.Martinenaite E, Ahmad SM, Svane IM, Andersen MH. Peripheral memory T cells specific for Arginase-1. Cell Mol Immunol 2019;16(8):718–719.Martinenaite E, Ahmad SM, Bendtsen SK, Jørgensen MA, Weis-Banke SE, Svane IM, Andersen MH. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunol Immunother 2019;68(11):1901–1907.Ethics ApprovalThis study was approved by the Scientific Ethics Committee for The Capital Region of Denmark and Danish Ethics Committee on experimental animal welfare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A602-A602
Author(s):  
Matthew Lakins ◽  
Wenjia Liao ◽  
Emma McConnell ◽  
Quincy Kaka ◽  
Jennifer Ofoedu ◽  
...  

BackgroundImmune checkpoint inhibitors have demonstrated durable clinical responses and an increase in overall survival for some patients with cancer. Next generation cancer immunotherapies, such as tumor necrosis factor receptor superfamily (TNFRSF) agonists, have potential to further improve on this success. FS120 is a tetravalent bispecific antibody targeting OX40 and CD137 (4-1BB), currently being evaluated in a Phase I clinical trial (NCT04648202). FS120 activates CD4+ and CD8+ T cells by concurrent binding to both targets via an FcgR-independent mechanism [1]. In preclinical tumor models, FS120 induced T cell proliferation and cytokine production associated with significant tumor regression, better than that observed with a monoclonal antibody combination. Here, we demonstrate the ability of FS120 to improve anti-PD-1 induced T cell activity, increasing tumor growth inhibition and survival, in syngeneic mouse tumor models, compared to monotherapy.MethodsFS120 < i >in vitro</i > activity in combination with anti-PD-1 was assessed by utilizing staphylococcal enterotoxin A (SEA) superantigen assays and mixed leukocyte reaction (MLR) assays. An anti-mouse OX40/CD137 bispecific antibody (FS120 surrogate) was tested in CT26 syngeneic mouse tumor models in combination with an anti-mouse PD-1 antibody to assess efficacy and pharmacodynamic endpoints, including T cell proliferation by < i>ex vivo</i> flow cytometry and serum cytokine levels.ResultsFS120 in combination with anti-PD-1 enhanced primary human T cell activity, when compared to either monotherapy, in both SEA and MLR assays. FS120 surrogate significantly improved survival of CT26 tumor-bearing mice treated with anti-mPD-1 antibody. FS120 surrogate and anti-PD-1 combination significantly enhanced serum interferon-gamma levels and increased proliferating granzyme B+ CD8+ T cells in the blood of tumor-bearing mice, when compared to either monotherapy treatments.ConclusionsFS120 combination with anti-PD-1 enhances T cell activity in multiple human primary immune assays. In combination with anti-PD-1, FS120 surrogate increased the antitumor efficacy with pharmacodynamic changes related specifically to T cell activation, when compared to monotherapies. These data support the development of FS120 in combination with anti-PD-1 in patients with hard-to-treat cancers who may not benefit fully from either treatment as a monotherapy.ReferencesGaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett K L, Wollerton F, Morrow M, Tuna M, Brewis N. CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement. Cancer Immunol Res. 2020; (8) (6) 781–793Ethics ApprovalMurine studies were conducted under a U.K. Home Office License in accordance with the U.K. Animal (Scientific Procedures) Act 1986 and EU Directive EU 2010/63.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A900-A900
Author(s):  
Nadine Jahchan ◽  
Hanna Ramoth ◽  
Vladi Juric ◽  
Erin Mayes ◽  
Shilpa Mankikar ◽  
...  

BackgroundThe tumor microenvironment (TME) often contains high levels of suppressive myeloid cells that contribute to innate checkpoint inhibitor (CPI) resistance. Pionyr’s Myeloid Tuning approach involves altering the composition and/or the function of myeloid cells in the TME. Myeloid reprogramming alters the function of immunosuppressive myeloid cells to acquire an immunostimulatory phenotype. Triggering receptor expressed on myeloid cells-1 (TREM1) is an immunoglobulin superfamily cell surface receptor enriched on tumor-associated myeloid cells. To investigate the potential of TREM1 modulation as an anti-cancer therapeutic strategy, Pionyr developed an afucosylated humanized anti-TREM1 monoclonal antibody termed PY159 and characterized it in pre-clinical and translational biomarker assays described below.MethodsPY159 responses in human whole blood and dissociated primary tumor cells in vitro were evaluated by flow cytometry and measurement of secreted cytokines and chemokines by MSD. TREM1 expression in human tumors was validated by scRNAseq, flow cytometry, and immunohistochemistry (IHC). In vivo efficacy and pharmacodynamic studies of a surrogate anti-mouse TREM1 antibody, termed PY159m, were evaluated using syngeneic mouse tumor models, either as a single-agent or in combination with anti-PD-1. To select tumor types and patients most likely to benefit from PY159 therapy, Pionyr developed qualitative and quantitative monoplex and multiplex IHC assays that detect TREM1 expression levels in human tumor tissues.ResultsPY159 treatment in vitro induced signaling, upregulated monocyte activation markers, and induced proinflammatory cytokines. In human tumors, TREM1 was detected on tumor-associated neutrophils, tumor-associated macrophages, and monocytic myeloid-derived suppressive cells. The surrogate PY159m anti-mouse TREM1 antibody exhibited anti-tumor efficacy in several syngeneic mouse tumor models, both as single-agent and in combination with anti-PD-1. Screening for TREM1 expression in tumor tissues demonstrated that TREM1+ tumor associated myeloid cells were highly enriched in the TME of multiple solid tumor indications. The monoplex and multiplex IHC assays offered insights into the localization of TREM1+ myeloid cells and their spatial relationship with other immune cells present in the TME to determine what immune composition will be more favorable for response to PY159 therapy.ConclusionsCollectively, the available nonclinical data support PY159 as a TREM1 agonist that reprograms myeloid cells and unleashes anti-tumor immunity. PY159 safety and efficacy are currently being evaluated in first-in-human clinical trial (NCT04682431) involving select advanced solid tumors patients resistant and refractory to standard of care therapies alone and in combination with a CPI. The TREM1 IHC assay is successfully being used on FFPE archival tumor tissues from enrolled patients to determine TREM1 expression levels.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu Zhang ◽  
Jiajia Jiang ◽  
Jiayin Zhang ◽  
Han Shen ◽  
Maoye Wang ◽  
...  

Abstract Background Circular RNAs (circRNAs) play important roles in cancer development and progression. The purpose of this study is to identify aberrantly expressed circRNAs in gastric cancer (GC), unravel their roles in GC progression, and provide new targets for GC diagnosis and therapy. Methods Bioinformatic analyses were performed to identify the aberrantly expression of hsa_circ_0061137 (termed as circDIDO1) in GC. Gain- and loss-of-function studies were performed to examine the biological roles of circDIDO1 in GC progression. Tagged RNA affinity purification, mass spectrometry, immunofluorescence, co-immunoprecipitation, and Western blot were used to identify circRNA-interacting and circRNA-encoded proteins. RNA sequencing, qRT-PCR, and Western blot were performed to analyze circRNA-regulated downstream target genes and signaling pathways. Mouse tumor models were used to analyze the effects of circDIDO1 on GC growth and metastasis. Results CircDIDO1 was transcribed from human DIDO1 (death-inducer obliterator 1) gene and formed by back-splicing of exons 2–6 of the linear transcript. circDIDO1 was down-regulated in GC tissues and its low levels were associated with larger tumor size, distal metastasis, and poor prognosis. CircDIDO1 overexpression inhibited while knockdown promoted GC cell proliferation, migration and invasion. CircDIDO1 overexpression suppressed GC growth and metastasis in mouse tumor models. Mechanistically, circDIDO1 encoded a novel 529aa protein that directly interacted with poly ADP-ribose polymerase 1 (PARP1) and inhibited its activity. CircDIDO1 also specifically bound to peroxiredoxin 2 (PRDX2) and promoted RBX1-mediated ubiquitination and degradation of PRDX2, which led to the inactivation of its downstream signaling pathways. Conclusions CircDIDO1 is a new circRNA that has tumor suppressor function in GC and it may serve as a potential prognostic biomarker and therapeutic target for GC.


Author(s):  
Ivan N. Terterov ◽  
Vyacheslav A. Chubenko ◽  
Nikolay A. Knyazev ◽  
Vladimir V. Klimenko ◽  
Andrei A. Bogdanov ◽  
...  

2021 ◽  
Author(s):  
Baokun He ◽  
Lei Zhang ◽  
Li Jiang ◽  
Liang Yu ◽  
Qin Li ◽  
...  

Abstract Metabolic alteration influences cancer immunity. However, the role and mechanism of metabolic adaption on immune checkpoint blockade (ICB) responses remains ill-defined. Here, to identify metabolites that modulate ICB sensitivity, metabolomic profiling in mouse tumor models and cancer patients treated with ICB was performed. We identified that metabolite inosine was associated with ICB sensitivity in mice and humans, and overcame ICB resistance in several mouse tumor models. Notably, inosine sensitized tumor cells to T cell-mediated cytotoxicity by amplifying tumor-intrinsic immunogenicity. Chemical proteomics further identified that inosine directly bound and inhibited ubiquitin-activating enzyme UBA6. Tumor UBA6 loss augmented tumor immunogenicity and substituted the synergistic effect of inosine in combination with ICB. Clinically, tumor UBA6 expression negatively correlated with ICB response in cancer patients. Thus, we reveal an unappreciated function of inosine on tumor-intrinsic immunogenicity and provide UBA6 as a candidate target for immunotherapy.


2021 ◽  
Author(s):  
Fazhi Yu ◽  
Qin Zhou ◽  
Ying Zhou ◽  
Yijia Xie ◽  
Peng Zhang ◽  
...  

Abstract Taxanes are widely used in chemotherapy, but intrinsic and acquired resistance limit the clinical outcomes. Studies showed tumor interaction with suppressive macrophages plays a key role in taxane resistance, yet therapeutic strategies that deplete or repolarize macrophages are challenging. Here we uncovered a novel tumor-macrophage interaction via Notch2-Jag1 justacrine signaling that can be targeted to sensitize paclitaxel response without affecting the broad macrophage functions. Using translatome profiling, we identified Notch2 upregulation during taxol-induced prolonged mitosis. Notch2 was subsequently activated in the post-mitotic G1 phase by Jag1 expressed on neighboring macrophages, which promoted tumor cell survival by upregulating p38 and anti-apoptotic proteins. Notch2 also upregulated cytokines that further recruited Jag1-expressing macrophages. By targeting this Notch2-Jag1 interaction with a pan-Notch inhibitor, RO4929097, taxol resistance was significantly attenuated in multiple mouse tumor models. Our results point to combining Notch inhibitor with taxane as an effective strategy to selectively disrupt tumor-macrophage interaction underlying chemoresistance.


Sign in / Sign up

Export Citation Format

Share Document