scholarly journals The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: results fromKeplerquarter 14–17 data

2015 ◽  
Vol 11 (1) ◽  
pp. 1-24 ◽  
Author(s):  
J.A. Guzik ◽  
P.A. Bradley ◽  
J. Jackiewicz ◽  
J. Molenda-Zakowicz ◽  
K. Uytterhoeven ◽  
...  
2013 ◽  
Vol 9 (S301) ◽  
pp. 63-66 ◽  
Author(s):  
Joyce A. Guzik ◽  
Paul A. Bradley ◽  
Jason Jackiewicz ◽  
Katrien Uytterhoeven ◽  
Karen Kinemuchi

AbstractWe examine the light curves of over 2700 stars observed in long cadence by the Kepler spacecraft as part of the Guest Observer program. Most of these stars are faint (Kepler magnitude > 14), and fall near or within the effective temperature and log g range of the γ Dor and δ Sct instability strips. We find that the pulsating stars are obvious from inspection of the light curves and power spectra, even for these faint stars. However, we find that a large number of stars are ‘constant’, i.e. show no frequencies in the 0.2 to 24 d−1 range above the 20 ppm level. We discuss the statistics for the constant stars, and some possible physical reasons for lack of pulsations. On the other hand, γ Dor and δ Sct candidates have been found in the Kepler data spread throughout and even outside of the instability regions of both types that were established from pre-Kepler ground-based observations. We revisit mechanisms to produce g- or p-mode pulsations in conditions when these modes are not expected to be unstable via the He-ionization κ effect (δ Sct) or convective blocking (γ Dor) pulsation driving mechanisms.


2014 ◽  
Vol 9 (4) ◽  
pp. 1-2
Author(s):  
Joyce A. Guzik ◽  
Paul A. Bradley ◽  
Jason Jackiewicz ◽  
Joanna Molenda-Zakowicz ◽  
Katrien Uytterhoeven ◽  
...  

1967 ◽  
Vol 28 ◽  
pp. 105-176
Author(s):  
Robert F. Christy

(Ed. note: The custom in these Symposia has been to have a summary-introductory presentation which lasts about 1 to 1.5 hours, during which discussion from the floor is minor and usually directed at technical clarification. The remainder of the session is then devoted to discussion of the whole subject, oriented around the summary-introduction. The preceding session, I-A, at Nice, followed this pattern. Christy suggested that we might experiment in his presentation with a much more informal approach, allowing considerable discussion of the points raised in the summary-introduction during its presentation, with perhaps the entire morning spent in this way, reserving the afternoon session for discussion only. At Varenna, in the Fourth Symposium, several of the summaryintroductory papers presented from the astronomical viewpoint had been so full of concepts unfamiliar to a number of the aerodynamicists-physicists present, that a major part of the following discussion session had been devoted to simply clarifying concepts and then repeating a considerable amount of what had been summarized. So, always looking for alternatives which help to increase the understanding between the different disciplines by introducing clarification of concept as expeditiously as possible, we tried Christy's suggestion. Thus you will find the pattern of the following different from that in session I-A. I am much indebted to Christy for extensive collaboration in editing the resulting combined presentation and discussion. As always, however, I have taken upon myself the responsibility for the final editing, and so all shortcomings are on my head.)


2019 ◽  
Vol 15 (S356) ◽  
pp. 407-407
Author(s):  
Abduselam Mohammed

AbstractAs a pulsating star moves in its binary orbit, the path length of the light between us and the star varies, leading to the periodic variation in the arrival time of the signal from the star to us (earth). With the consideration of pulsators light arrival time delay effects several new methods which allows using Kepler photometric data (light curves) alone to find binary stars have been recently developed. Among these modern techniques we used binarogram method and we identified that several δSct pulsating stars have companions. The application of these method on detecting long periods(i.e. longer than about 50 d) δSct pulsating stars is not new, but the uniqueness of this study is we verified that it is also applicable to detect and determine the orbital elements of short periods (i.e short orbital period) δSct pulsating stars. With this investigation, we identified the possible way to overcome effects of fictious peaks, even, on the maximum peaks helpful to verify weather the star has companion or not depend up on the existence of the time-delay. Then, we applied the technique on known binary stars and their orbital elements are previously published. Finally, we identified some new short orbital period δSct pulsating stars and obtained their orbital frequency and period with the same procedures. Because of with our attempts we succeeded and verified the applicability of the method (the Binarogram method) on these stars (i.e short orbital period) for the first time, we expect that our present study will play a great role for similar study and to improve our binary statistics.


1980 ◽  
Vol 4 (1) ◽  
pp. 80-83
Author(s):  
P. A. Stamford ◽  
R. D. Watson

Spectral line profiles in pulsating stars are affected by the interplay of a number of velocity fields. In addition to the basic velocities associated with the pulsation mode, the complications of stellar rotation, atmospheric velocity gradients, stellar winds and varying scales of turbulence may also be present. Initial modelling for line profiles in variables assumed a constant ‘intrinsic profile’ which was integrated over the limb-darkened stellar disk. This approach has been used even in recent work for nonradial pulsations (Stamford and Watson 1977; Kubiak 1978) because of computational ease. Employing an LTE analysis to predict centre-to-limb profile variations, which are then integrated over the disk, represents an improvement on this. This has been done, for example, by Parsons (1972) for radial pulsations in cepheids and by Smith (1978) for nonradial oscillations in B stars. Mihalas (1979) has recently made an even more detailed examination of profiles in expanding atmospheres which involved consideration of velocity gradients, departures from LTE and rotation.


1996 ◽  
Vol 77 (20) ◽  
pp. 4134-4137 ◽  
Author(s):  
Nils Andersson ◽  
Kostas D. Kokkotas

2020 ◽  
Vol 501 (1) ◽  
pp. 483-490
Author(s):  
Jim Fuller

ABSTRACT In close binary stars, the tidal excitation of pulsations typically dissipates energy, causing the system to evolve towards a circular orbit with aligned and synchronized stellar spins. However, for stars with self-excited pulsations, we demonstrate that tidal interaction with unstable pulsation modes can transfer energy in the opposite direction, forcing the spins of the stars away from synchronicity, and potentially pumping the eccentricity and spin–orbit misalignment angle. This ‘inverse’ tidal process only occurs when the tidally forced mode amplitude is comparable to the mode’s saturation amplitude, and it is thus most likely to occur in main-sequence gravity mode pulsators with orbital periods of a few days. We examine the long-term evolution of inverse tidal action, finding the stellar rotation rate can potentially be driven to a very large or very small value, while maintaining a large spin–orbit misalignment angle. Several recent asteroseismic analyses of pulsating stars in close binaries have revealed extremely slow core rotation periods, which we attribute to the action of inverse tides.


2005 ◽  
Vol 13 ◽  
pp. 397-402 ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe physics of solar and stellar oscillations determine their observable characteristics. I provide a brief overview of the properties of solar-like oscillations, excited by stochastic processes, in other stars. In addition, I consider the current state of investigations of such oscillations, as well as the prospects for an improved understanding of their physics and the properties of the pulsating stars.


2014 ◽  
Vol 441 (3) ◽  
pp. 2515-2527 ◽  
Author(s):  
S. J. Murphy ◽  
T. R. Bedding ◽  
H. Shibahashi ◽  
D. W. Kurtz ◽  
H. Kjeldsen

Science ◽  
1942 ◽  
Vol 96 (2497) ◽  
pp. 12-12
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document