scholarly journals Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties

2016 ◽  
Vol 45 (6) ◽  
pp. 1165-1171 ◽  
Author(s):  
Arthanari Saravanakumar ◽  
Mei Mei Peng ◽  
Mani Ganesh ◽  
Jayabalan Jayaprakash ◽  
Murugan Mohankumar ◽  
...  
2018 ◽  
Vol 42 (19) ◽  
pp. 15905-15916 ◽  
Author(s):  
Fayezeh Samari ◽  
Hossein Salehipoor ◽  
Ebrahim Eftekhar ◽  
Saeed Yousefinejad

Aqueous mango leaf extract was used as a reducing and capping agent for the biosynthesis of silver nanoparticles (AgNPs)viaa single-step, low cost and green process.


RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96573-96583 ◽  
Author(s):  
Raja Mohamed Sait Thameem Azarudeen ◽  
Marimuthu Govindarajan ◽  
Abubucker Amsath ◽  
Shine Kadaikunnan ◽  
Naiyf S. Alharbi ◽  
...  

As a low-cost and eco-friendly control tool, Ag nanoparticles were fabricated usingHedyotis puberulaaqueous extract as a reducing and capping agent and showed potent activity against malaria and arbovirus vectors with low biotoxicity against non-target aquatic organisms.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Author(s):  
Joy James Costa ◽  
Hassan Hosseinzadeh ◽  
Dabasish Kumar Saha ◽  
Shihab Uddin Al Mahmud ◽  
Bhuiyan Mohammad Mahtab Uddin ◽  
...  

2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


Sign in / Sign up

Export Citation Format

Share Document