scholarly journals Sentence processing selectivity in Broca's area: evident for structure but not syntactic movement

2015 ◽  
Vol 30 (10) ◽  
pp. 1326-1338 ◽  
Author(s):  
Corianne Rogalsky ◽  
Diogo Almeida ◽  
Jon Sprouse ◽  
Gregory Hickok
2009 ◽  
Vol 21 (12) ◽  
pp. 2434-2444 ◽  
Author(s):  
David January ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition between incompatible characterizations of a linguistic stimulus may recruit top–down cognitive control processes mediated by prefrontal cortex. We use functional magnetic resonance imaging to test the hypothesis that individuals use shared prefrontal neural circuitry during two very different tasks—color identification under Stroop conflict and sentence comprehension under conditions of syntactic ambiguity—both of which putatively rely on cognitive control processes. We report the first demonstration of within-subject overlap in neural responses to syntactic and nonsyntactic conflict. These findings serve to clarify the role of Broca's area in, and the neural and psychological organization of, the language processing system.


2017 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

AbstractBroca’s area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared to canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca’s area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. The present study investigates these seemingly conflicting findings in 66 left hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca’s area (but excluding the temporal lobe; n=11) on average did not exhibit the expected agrammatic comprehension pattern, e.g. their performance was > 80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage (n=18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion symptom mapping (VLSM), we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca’s area. Notably however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca’s area, suggesting that the contribution of Broca’s area to sentence comprehension may be related to task-related cognitive demands.


2005 ◽  
Vol 24 (2) ◽  
pp. 79-91 ◽  
Author(s):  
C.J. Fiebach ◽  
M. Schlesewsky ◽  
G. Lohmann ◽  
D.Y. von Cramon ◽  
A.D. Friederici

Author(s):  
Peter Indefrey

This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.


2020 ◽  
Vol 32 (2) ◽  
pp. 256-271 ◽  
Author(s):  
Sigfus Kristinsson ◽  
Helga Thors ◽  
Grigori Yourganov ◽  
Sigridur Magnusdottir ◽  
Haukur Hjaltason ◽  
...  

Left-hemisphere brain damage commonly affects patients' abilities to produce and comprehend syntactic structures, a condition typically referred to as “agrammatism.” The neural correlates of agrammatism remain disputed in the literature, and distributed areas have been implicated as important predictors of performance, for example, Broca's area, anterior temporal areas, and temporo-parietal areas. We examined the association between damage to specific language-related ROIs and impaired syntactic processing in acute aphasia. We hypothesized that damage to the posterior middle temporal gyrus, and not Broca's area, would predict syntactic processing abilities. One hundred four individuals with acute aphasia (<20 days poststroke) were included in the study. Structural MRI scans were obtained, and all participants completed a 45-item sentence–picture matching task. We performed an ROI-based stepwise regression analyses to examine the relation between cortical brain damage and impaired comprehension of canonical and noncanonical sentences. Damage to the posterior middle temporal gyrus was the strongest predictor for overall task performance and performance on noncanonical sentences. Damage to the angular gyrus was the strongest predictor for performance on canonical sentences, and damage to the posterior superior temporal gyrus predicted noncanonical scores when performance on canonical sentences was included as a cofactor. Overall, our models showed that damage to temporo-parietal and posterior temporal areas was associated with impaired syntactic comprehension. Our results indicate that the temporo-parietal area is crucially implicated in complex syntactic processing, whereas the role of Broca's area may be complementary.


2018 ◽  
Vol 30 (2) ◽  
pp. 234-255 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion–symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence–picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern—for example, their performance was >80% on noncanonical sentences in the sentence–picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion–symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal–inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.


NeuroImage ◽  
2012 ◽  
Vol 62 (3) ◽  
pp. 1987-1998 ◽  
Author(s):  
Lars Meyer ◽  
Jonas Obleser ◽  
Alfred Anwander ◽  
Angela D. Friederici

2011 ◽  
Vol 23 (7) ◽  
pp. 1664-1680 ◽  
Author(s):  
Corianne Rogalsky ◽  
Gregory Hickok

The role of Broca's area in sentence processing has been debated for the last 30 years. A central and still unresolved issue is whether Broca's area plays a specific role in some aspect of syntactic processing (e.g., syntactic movement, hierarchical structure building) or whether it serves a more general function on which sentence processing relies (e.g., working memory). This review examines the functional organization of Broca's area in regard to its contributions to sentence comprehension, verbal working memory, and other multimodal cognitive processes. We suggest that the data are consistent with the view that at least a portion of the contribution of Broca's area to sentence comprehension can be attributed to its role as a phonological short-term memory resource. Furthermore, our review leads us to conclude that there is no compelling evidence that there are sentence-specific processing regions within Broca's area.


2012 ◽  
Vol 120 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Malathi Thothathiri ◽  
Albert Kim ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

Sign in / Sign up

Export Citation Format

Share Document