Adaptive dynamic sliding mode control for space manipulator with external disturbance

2018 ◽  
Vol 6 (4) ◽  
pp. 236-251 ◽  
Author(s):  
Jing Zhao ◽  
Sen Jiang ◽  
Fei Xie ◽  
Xian Wang ◽  
Zeyun Li
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
Yunmei Fang ◽  
Wen Fu ◽  
Cuicui An ◽  
Zhuli Yuan ◽  
Juntao Fei

An adaptive dynamic sliding mode control via a backstepping approach for a microelectro mechanical system (MEMS) vibratory z-axis gyroscope is presented in this paper. The time derivative of the control input of the dynamic sliding mode controller (DSMC) is treated as a new control variable for the augmented system which is composed of the original system and the integrator. This DSMC can transfer discontinuous terms to the first-order derivative of the control input, and effectively reduce the chattering. An adaptive dynamic sliding mode controller with the method of backstepping is derived to real-time estimate the angular velocity and the damping and stiffness coefficients and asymptotical stability of the designed systems can be guaranteed. Simulation examples are investigated to demonstrate the satisfactory performance of the proposed adaptive backstepping sliding mode control.


Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


Sign in / Sign up

Export Citation Format

Share Document