scholarly journals Modelling, Simulation and Dynamic Sliding Mode Control of a MEMS Gyroscope

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
Yunmei Fang ◽  
Wen Fu ◽  
Cuicui An ◽  
Zhuli Yuan ◽  
Juntao Fei

An adaptive dynamic sliding mode control via a backstepping approach for a microelectro mechanical system (MEMS) vibratory z-axis gyroscope is presented in this paper. The time derivative of the control input of the dynamic sliding mode controller (DSMC) is treated as a new control variable for the augmented system which is composed of the original system and the integrator. This DSMC can transfer discontinuous terms to the first-order derivative of the control input, and effectively reduce the chattering. An adaptive dynamic sliding mode controller with the method of backstepping is derived to real-time estimate the angular velocity and the damping and stiffness coefficients and asymptotical stability of the designed systems can be guaranteed. Simulation examples are investigated to demonstrate the satisfactory performance of the proposed adaptive backstepping sliding mode control.

2015 ◽  
Vol 44 (4) ◽  
pp. 380-386
Author(s):  
Yunmei Fang ◽  
Zhuli Yuan ◽  
Juntao Fei

In this paper, a dynamic sliding mode control using adaptive fuzzy backstepping (DSMCAFB) approach for a micro-electromechanical system (MEMS) vibratory z-axis gyroscope is presented. Based on an adaptive fuzzy backstepping control method, a dynamic sliding mode control is proposed to compensate and adjust the external disturbances and model uncertainties. The fuzzy control method with adaptive backstepping control design can avoid depending on the system model and approximate the system nonlinearities well. What’s more ,it can make the controller have the ability to learn and adjust the fuzzy parameters in real time. In addition, dynamic sliding mode control can transfer discontinuous terms to the first-order derivative of the control input in order to effectively reduce the chattering. The simulation studies are investigated to demonstrate the satisfactory performance of the proposed method.DOI: http://dx.doi.org/10.5755/j01.itc.44.4.9110


Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


Sign in / Sign up

Export Citation Format

Share Document