Match and mismatched second-order sliding mode finite-time control with simple parameter conditions and its applications

Author(s):  
Jun Liu ◽  
Chengkun Li
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chutiphon Pukdeboon

This paper investigates the robust finite-time control problem for flexible spacecraft attitude tracking maneuver in the presence of model uncertainties and external disturbances. Two robust attitude tracking controllers based on finite-time second-order sliding mode control algorithms are presented to solve this problem. For the first controller, a novel second-order sliding mode control scheme is developed to achieve high-precision tracking performance. For the second control law, an adaptive-gain second-order sliding mode control algorithm combing an adaptive law with second-order sliding mode control strategy is designed to relax the requirement of prior knowledge of the bound of the system uncertainties. The rigorous proofs show that the proposed controllers provide finite-time convergence of the attitude and angular velocity tracking errors. Numerical simulations on attitude tracking control are presented to demonstrate the performance of the developed controllers.


Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Author(s):  
Jie Yang ◽  
◽  
Qinglin Wang ◽  
Yuan Li ◽  
Jinhua She ◽  
...  

This paper presents a stabilization method for an underactuated ball-and-beam system (BABS) based on a second-order sliding mode (SOSM) control. The BABS is an underactuated nonlinear system that is widely used to verify nonlinear control performance. Virtual control is introduced to a second-order BABS subsystem to minimize control performance inaccuracy by using model linearization. An actual virtual controller with variable finite-time tracking is achieved using a second-order sliding mode controller. An adaptive robust method is proposed to solve an uncertainty problem with unknown upper bounds, and then a finite-time convergence theory proof is given. Theory, simulation and experiment results verify the efficiency of the BABS controller.


2018 ◽  
Vol 41 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
Lu Liu ◽  
Shihong Ding ◽  
Li Ma ◽  
Haibin Sun

In this paper, a novel discontinuous second-order sliding mode control approach has been developed to handle sliding mode dynamics with a nonvanishing mismatched disturbance by using Lyapunov theory and a finite-time disturbance observer. Firstly, the finite-time disturbance observer is designed to estimate the nonvanishing mismatched disturbance. Secondly, a virtual controller has been constructed based on the estimated value such that the sliding variable can be stabilized to zero in a finite time. Then, the real discontinuous controller is designed to guarantee that the virtual controller can be well tracked in a finite time. Lyapunov analysis also verifies the finite-time stability of the closed-loop sliding mode control system. The developed discontinuous second-order sliding mode control method possesses two appealing features including strong robustness with respect to the matched and mismatched nonvanishing disturbances, and relaxation on the constant upper bound of uncertainties widely used in a conventional second-order sliding mode. Finally, an academic example is illustrated to verify the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Chutiphon Pukdeboon

The attitude tracking control problem of a spacecraft nonlinear system with external disturbances and inertia uncertainties is studied. Two robust attitude tracking controllers based on finite-time second-order sliding mode control schemes are proposed to solve this problem. For the first controller, smooth super twisting control is applied to quaternion-based spacecraft-attitude-tracking maneuvers. The second controller is developed by adding linear correction terms to the first super twisting control algorithm in order to improve the dynamic performance of the closed-loop system. Both controllers are continuous and, therefore, chattering free. The concepts of a strong Lyapunov function are employed to ensure a finite-time convergence property of the proposed controllers. Theoretical analysis shows that the resulting control laws have strong robustness and disturbance attenuation ability. Numerical simulations are also given to demonstrate the performance of the proposed control laws.


Sign in / Sign up

Export Citation Format

Share Document