model linearization
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Mingming Mei ◽  
Shuo Cheng ◽  
Liang Li ◽  
Bingjie Yan

Abstract Based on the guaranteed cost theory, this paper proposes a robust controller for the automotive electro-hydraulic coupling system. However, parameter perturbation caused by the model linearization is a critical challenge for the nonlinear electro-hydraulic coupling system. Generally, the electrical brake booster system (E-Booster) can be separated into three parts, a permanent magnet synchronous motor (PMSM), a hydraulic model of the master cylinder, and the transmission mechanism. In this paper, the robust guaranteed cost controller (RGCC) could adjust accurately the pushrod position of the E-Booster and has strong robustness against internal uncertainties, and the linear extended state observer (LESO) was utilized to optimize E-Booster's dynamic performance. Thus, the tracking differentiator (TD) and LESO are used to improve the dynamic precision and reduce the hysteresis effect. The overshoot is suppressed by TD, and the disturbance caused by nonlinear uncertainty is restrained by LESO. Experiment results show that RGCC sacrifices 6% phase lag in the low-frequency domain for a 10% and 40% reduction in first and second-order respectively compared with the proportion integration differentiation (PID). Results demonstrate that RGCC has higher precision and stronger robustness in dynamic behaviour.


Author(s):  
Rongkang Luo ◽  
Peibao Wu ◽  
Jiabin Luo ◽  
Zhichao Hou ◽  
Le He ◽  
...  

A seat suspension contributes greatly to vehicle ride comfort as a result of direct contact with the human body. Friction in a seat suspension produces strong non-smooth nonlinearity in seat dynamics, which makes the simulation-based optimization on the seat suspension’s performance time-consuming. This study tries to address parameter optimization on a vehicle seat suspension with the friction force in an analytical approach. A two degrees of freedom model is firstly established for the human body-seat system with friction and subjected to bandlimited random excitation. The nonlinear model is converted into an equivalent linear model by using Gaussian linearization. The dynamic responses of the linear model have then derived analytically and validated by Monte Carlo simulations. Based on the analytical solution, a multi-objective optimization strategy is proposed for the seat suspension. The acceleration of the human body and the suspension travel are chosen as the objective indexes to evaluate seat performance. Simulation results show that the proposed optimization strategy is efficient, where a global optimum is guaranteed owing to the analytical expression of the objective function. The optimization approach taking advantage of model linearization can be applied to similar mechanical systems with friction.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2534
Author(s):  
Tolga Omay ◽  
Aysegul Corakci ◽  
Esra Hasdemir

In this study, we consider the hybrid nonlinear features of the Exponential Smooth Transition Autoregressive-Fractional Fourier Function (ESTAR-FFF) form unit root test. As is well known, when developing a unit root test for the ESTAR model, linearization is performed by the Taylor approximation, and thereby the nuisance parameter problem is eliminated. Although this linearization process leads to a certain amount of information loss in the unit root testing equation, it also causes the resulting test to be more accessible and consistent. The method that we propose here contributes to the literature in three important ways. First, it reduces the information loss that arises due to the Taylor expansion. Second, the research to date has tended to misinterpret the Fourier function used with the Kapetanios, Shin and Snell (2003) (KSS) unit root test and considers it to capture multiple smooth transition structural breaks. The simulation studies that we carry out in this study clearly show that the Fourier function only restores the Taylor residuals of the ESTAR type function rather than accounting forthe smooth structural break. Third, the new nonlinear unit root test developed in this paper has very strong power in the highly persistent near unit root environment that the financial data exhibit. The application of the Kapetanios Shin Snell- Fractional Fourier (KSS-FF) test to ex-post real interest rates data of 11 OECD countries for country-specific sample periods shows that the new test catches nonlinear stationarity in many more countries than the KSS test itself.


2021 ◽  
Author(s):  
Liang Cheng ◽  
Jianbo Wu ◽  
Yingjie Guo ◽  
Jiangxiong Li ◽  
Yinglin Ke

Abstract Dynamic models play a critical role in the design of model-based controllers, and therefore have a significant effect on the dynamic characteristics of motion equipment. We mainly focus on the dynamic modeling and parameter identification for a gantry-type automated fiber placement (AFP) machine in this paper. First, a dynamic modeling process combining prismatic axes and revolute axes is conducted by the Newton-Euler method, in which the effects of friction and hydraulic balance system are also considered. Then, as the convenience for parameter identification and the application in linearity control, the methods of dynamic model linearization and determination of minimum inertial parameters based on the multi-body system (MBS) theory are proposed, and a dynamic model in the form of linearized minimum inertial parameters is consequently established. To identify the parameters in the model, key issues regarding excitation trajectory, filtering, and identification algorithm are discussed in detail. Finally, corresponding experiments are performed on the AFP machine, and experimental results show that there is a good agreement between the prediction of the model and the measurement in actuality. Data analysis shows that except for Z-axis, the relative error rates of the others are not greater than 5%, which proves the effectiveness of the established dynamic model and the identified parameters.


Energetika ◽  
2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Anatoly Tarelin ◽  
Alexander Lyutikov ◽  
Iryna Annopolska

The design and development processes of gas turbine engines rely on the usage of mathematical models representing the physics of engine functioning processes. One way of increasing the validity of a mathematical model is its identification based on engine test results. The identification of mathematical models of modern power-generating gas turbine engines (GTEs) presents a demanding and time-consuming task due to the necessity to identify the main controlled engine parameters determined in the course of experimental studies depending on a large number of the parameters that are not controlled during the experiment. In this regard the actual direction of reducing the labour intensity of the process of mathematical model identification is using identification program complexes. The object of the study was to solve the problem of structural-parametrical identification of the power-generating GTE functioning model detailing the turbine flow path calculations to the level of blade rows in order to obtain the GTE mathematical model that describes the characteristics of a real engine with given accuracy. To achieve the objective, the following problems were solved: variable parameters, controlled parameters and characteristics, ranges of their variations were selected from the total number of the mathematical model input data, the objective functions were defined; the task of the parametric identification according to the results of bench tests through GTE operating modes was performed; analytical approximating dependences for correcting coefficients (variable parameters) were obtained; structural-parametric identification of the mathematical model was performed. The novelty of the obtained results is the identification of the mathematical model of the nonlinear component GTE of the second level performed without model linearization (without its level lowering) by using the Optimum software packages. The methodological approach for the parametric identification of the mathematical model is proposed. This approach allows reducing the number of variable parameters under the modes lower that the maximum. It shows that the identified model allows obtaining the prediction results of the GTE parameters and characteristics through operating modes with a deviation of no more than 1.4% from the experimental data and, therefore, it will allow reduction of terms and an increase in the quality of power unit development.


2021 ◽  
Author(s):  
Guangjun Tan ◽  
Xuyang Zeng ◽  
Ying Zhang ◽  
Jinlong Wei ◽  
Zhi Chen ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhao Zhang ◽  
Zhong Yang ◽  
Si Xiong ◽  
Shuang Chen ◽  
Shuchang Liu ◽  
...  

The Cabin Pressure Control System (CPCS) is an essential part of the aviation environmental control system that ensures aircraft structure and flight crew safety. However, the CPCS usually has potential faults of sensors and actuators. To this end, a Simple Adaptive Control- (SAC-) based reconfiguration method is proposed to compensate for the above adverse effects. Some good pressure control performance of CPCS can be achieved by the basic pressure controller when the system is in normal operation. A parallel feedforward compensator is designed to guarantee the closed-loop system’s stability and the almost strictly positive realness of the augmented system. Thus, the simple adaptive controller can be utilized for the CPCS. In particular, the reconfiguration system can update the control law online when the fault occurs without the system identification process. The reference model is obtained by mathematical model linearization after considering the mechanical characteristics of the CPCS. Extensive simulations under various typical fault scenarios are carried out throughout the entire flight envelope of the aircraft from take-off to landing. Simulation results validate the robustness and reconfiguration control capability of the proposed method.


Author(s):  
Minoru Takeo

Summary The Shinmoe-dake volcano started with three sub-Plinian eruptions from 26 to 27 January 2011, followed by a magma effusive stage from 28 to 31 January 2011, and Vulcanian eruptions occurred frequently during 1 to 10 February 2011. During the magma effusive and Vulcanian stages, multiple episodes of harmonic tremors were observed at stations near the summit crater. Although harmonic tremors have been observed at various volcanoes worldwide, the source mechanism remains poorly understood. This paper proposes a source model for harmonic tremors, which is composed of a nonlinear viscous fluid flow in a flexible channel. A simple lumped parameter model is used to consider the process. The dynamics are described by a third-order system of ordinary differential equations using model variables for a cross-sectional area of the constricted segment and the fluid velocities in the upstream and downstream tubes. This model produces various kinds of trajectories for self-sustained oscillations that change the reservoir pressure connected on the upstream channel of the model. Linearization analysis around the stationary point and global analysis employing nullcline planes reveal the mechanism of self-sustained oscillations of the system qualitatively. To consider both the frequency peaks of the harmonic tremor and the characteristics of observed phase spectra, the qualitative characteristics of an observed phase portrait are compared to those of a simulated one. This tremor model simulates the frequency peaks and the phase portraits of typical harmonic tremors observed during the 2011 Shinmoe-dake eruption. Because this model involves several geometrical configuration parameters, it has the potential to reveal the source mechanism of various kinds of harmonic tremors.


Sign in / Sign up

Export Citation Format

Share Document