Influence of Mediterranean shrub species on soil chemical properties in typical Mediterranean environment

2001 ◽  
Vol 32 (11-12) ◽  
pp. 1885-1898 ◽  
Author(s):  
Eugenia Gimeno-García ◽  
Vicente Andreu ◽  
José L. Rubio
2021 ◽  
Vol 21 (05) ◽  
pp. 18115-18130
Author(s):  
HS Wolle ◽  
◽  
P Barberi ◽  
S Carlesi ◽  
◽  
...  

Ethiopian agricultural lands are fragile due to inherent unfavourable soil properties, over-exploitation, mismanagement (deforestation, over-grazing and inappropriate land use systems) and harsh weather conditions. These factors are worsened by changing climatic conditions, leading to significant problems in terms of soil erosion and loss of soil fertility. The consequences of such processes can be detected at the economic (agricultural production is currently being jeopardized)and biological (risks of biodiversity loss and habitat fragmentation)levels. However, the use of tree/shrub species in various agroforestry practices can increase soil nutrient supply through nitrogen fixation, improve soil structure, reduce soil erosion and nutrient losses. A study was carried out in the Amhara region, Ethiopia to evaluate the effect of home garden and parkland agroforestry practices on selected soil chemical properties. Soil samples were taken from 20x20m square plots established in home garden agroforestry and adjacent agricultural land without trees (control). In parkland agroforestry practice, two dominant tree species in each of the five villages were chosen. Soil samples were taken from the tree at the midpoint of the canopy projection, at 0-15 and 15-30 cm depths. The collected soil samples were air-dried, homogenized and passed through a 2 mm sieve for subsequent soil chemical analysis. The results indicated that all soil chemical properties except total nitrogen were significantly (P ≤ 0.05) affected by the agroforestry practices.Higher soil organic carbon, organic matter, available phosphorus,and exchangeablepotassium were found in the home garden agroforestry practice, while the lowest values were recorded in without-tree fields (control). All soil chemical properties except soil pH decreased as the soil depth increased. Higher value of organic carbon, available phosphorus, and exchangeable potassium were found in the home garden agroforestry likely because of a higher proportion of deep-rooted tree/shrub species and species belonging to the legume functional group. Therefore, the home garden agroforestry practice can be used as an ecologically friendly and sustainable alternative to maintaining soil fertility.


2020 ◽  
Vol 112 (5) ◽  
pp. 4395-4406
Author(s):  
Maysoon M. Mikha ◽  
Gary W. Hergert ◽  
Xin Qiao ◽  
Bijesh Maharjan

2008 ◽  
Vol 37 (S5) ◽  
pp. S-8-S-24 ◽  
Author(s):  
Dennis L. Corwin ◽  
Scott M. Lesch ◽  
James D. Oster ◽  
Stephen R. Kaffka

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 571
Author(s):  
Willy Irakoze ◽  
Hermann Prodjinoto ◽  
Séverin Nijimbere ◽  
Jean Berchmans Bizimana ◽  
Joseph Bigirimana ◽  
...  

Salinity may strongly influence the interaction between plant roots and surrounding soil, but this has been poorly studied for sodium sulfate (Na2SO4). The aim of this study was to investigate the effect of sodium chloride (NaCl) and Na2SO4 salinities on the soil chemical properties as well as rice physiological- and yield-related parameters of two contrasted cultivars (V14 (salt-sensitive) and Pokkali (salt-resistant)). Pot experiments were conducted using soil and electrolyte solutions, namely NaCl and Na2SO4, inducing two electrical conductivity levels (EC: 5 or 10 dS m−1) of the soil solutions. The control treatment was water with salt-free tap water. Our results showed that soil pH increased under Na2SO4 salinity, while soil EC increased as the level of saline stress increased. Salinity induced an increase in Na+ concentrations on solid soil complex and in soil solution. NaCl reduced the stomatal density in salt-sensitive cultivar. The total protein contents in rice grain were higher in V14 than in Pokkali cultivar. Saline stress significantly affected all yield-related parameters and NaCl was more toxic than Na2SO4 for most of the studied parameters. Pokkali exhibited a higher tolerance to saline stress than V14, whatever the considered type of salt. It is concluded that different types of salts differently influence soil properties and plant responses and that those differences partly depend on the salt-resistance level of the considered cultivar.


Sign in / Sign up

Export Citation Format

Share Document