scholarly journals Numerical Analysis of Heat Transfer and Gas Flow in PEM Fuel Cell Ducts by a Generalized Extended Darcy Model

2004 ◽  
Vol 1 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Jinliang Yuan ◽  
Bengt Sundén
2021 ◽  
Vol 488 ◽  
pp. 229419
Author(s):  
Qianqian Wang ◽  
Fumin Tang ◽  
Bing Li ◽  
Haifeng Dai ◽  
Jim P. Zheng ◽  
...  

Author(s):  
Jinliang Yuan ◽  
Masoud Rokni ◽  
Bengt Sunde´n

In this study, a fully three-dimensional calculation method has been further developed to simulate and analyze various processes in a thick anode duct. The composite duct consists of a porous layer, the flow duct and solid current connector. The analysis takes the electrochemical reactions into account. Momentum and heat transport together with gas species equations have been solved by coupled source terms and variable thermo-physical properties (such as density, viscosity, specific heat, etc.) of the fuel gases mixture. The unique fuel cell conditions such as the combined thermal boundary conditions on solid walls, mass transfer (generation and consumption) associated with the electrochemical reaction and gas permeation to / from the porous electrode are applied in the analysis. Results from this study are presented for various governing parameters in order to identify the important factors on the fuel cell performance. It is found that gas species convection has a significant contribution to the gas species transport from / to the active reaction site; consequently characteristics of both gas flow and heat transfer vary widely due to big permeation to the porous layer in the entrance region and species mass concentration related diffusion after a certain distance downstream the inlet.


Author(s):  
Jinglin He ◽  
Song-Yul Choe ◽  
Chang-Ouk Hong

The flow in gas flow channels of an operating polymer electrolyte membrane (PEM) fuel cell has a two-phase characteristic that includes air, water vapor and liquid water and significantly affects the water flooding, pressure distribution along the channels, and subsequently the performance of the cell and system. Presence of liquid water in channels prevents transport of the reactants to the catalysts and increases the pressure difference between the inlet and outlet of channels, which leads to high parasitic power of pumps used in air and fuel supply systems. We propose a model that enables prediction of pressure drop and liquid water distribution along channels and analysis of water flooding in an operating fuel cell. The model was developed based on a gas-liquid two-phase separated flow that considers the variations of gas pressure, mass flow rate, relative humidity, viscosity, void fraction, and density along the channels on both sides. Effects of operating parameters that include stoichoimetric ratio, relative humidity, and inlet pressure on the pressure drop and water flooding along the channels were analyzed.


2016 ◽  
Vol 41 (4) ◽  
pp. 3023-3037 ◽  
Author(s):  
M. Rahimi-Esbo ◽  
A.A. Ranjbar ◽  
A. Ramiar ◽  
E. Alizadeh ◽  
M. Aghaee

Author(s):  
Paul Erickson ◽  
David Grupp

A novel method of using a liquid phase oxidizer in fuel cell applications has been discovered by researchers at UC Davis. This paper outlines potential implications for improving heat transfer and catalytic activity with this method. Experimental data have been collected and the results show that the proposed method of using liquid phase oxidizer does indeed allow operation of PEM fuel cell systems. Data indicate an improvement in overvoltage at low current but also clearly indicate a severely limited concentration polarization region with non-regenerated fluid. The preliminary data indicate the physical feasibility of the method but also show that more research and development is required.


2019 ◽  
Vol 30 (4) ◽  
pp. 2077-2097 ◽  
Author(s):  
Zhenxiao Chen ◽  
Derek Ingham ◽  
Mohammed Ismail ◽  
Lin Ma ◽  
Kevin J. Hughes ◽  
...  

Purpose The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells. Design/methodology/approach An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated. Findings The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell. Practical implications The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs. Originality/value The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells.


Author(s):  
Chengyuan Gong ◽  
Jun Shen ◽  
Yi Yu ◽  
Kaiqiang Wang ◽  
Zhengkai Tu

Sign in / Sign up

Export Citation Format

Share Document