Controlled Drug Release from Gelatin-Sodium Carboxymethylcellulose Interpenetrating Polymer Networks

2003 ◽  
Vol 40 (6) ◽  
pp. 629-639 ◽  
Author(s):  
G. V. N. Rathna ◽  
P. R. Chatterji
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alka Lohani ◽  
Garima Singh ◽  
Shiv Sankar Bhattacharya ◽  
Anurag Verma

Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.


2010 ◽  
Vol 10 (9) ◽  
pp. 1063-1072 ◽  
Author(s):  
Christian Wischke ◽  
Axel T. Neffe ◽  
Susi Steuer ◽  
Eva Engelhardt ◽  
Andreas Lendlein

2021 ◽  
Author(s):  
Priscila Siqueira ◽  
Ana de Lima ◽  
Felipe Medeiros ◽  
Augusta Isaac ◽  
Katia Novack ◽  
...  

Abstract The hydrogels are advanced materials used in biomedical applications during wound healing, controlled drug release and to prepare scaffolds. In this work are prepared hydrogels of alginate/chitosan (Alg/Ch) semi-interpenetrating polymer networks (semi-IPN’s) and nanocelluloses. The hydrogels after preparation by freeze drying are namely simply as gels. The cellulose nanocrystals (CNC’s) are obtained from acid hydrolysis of bleached Eucalyptus pulps and oxidized cellulose nanocrystals (CNCT’s) prepared by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical catalyzed reaction as known as TEMPO reaction. The cellulose nanofibers (NFC’s) are obtained from mechanical shearing of cellulose pulps and oxidized NFC’s by TEMPO-mediated reaction (NFCT’s). The nanocellulose suspension and gels are characterized by FTIR at ATR mode, TGA, XRD, TEM, SEM, X-ray computed microtomography (micro-CT) and DMTA. The addition of CNC’s, NFC’s, CNCT’s or NFCT’s in the microstructure of gels increases their dimensional stabilities. The best results are obtained when CNCT’s and NFCT’s are added. The mechanical properties and dimensional stability of Alg/Ch semi-IPN’s increase after controlled thermal post-treatment. The heating during thermal post-treatment boosts the physicochemical interactions in the microstructures of semi-IPN’s. The biological assays show biocompatibility of fibroblast cells on the substrates, and differentiation and proliferation up seven days. The optimized mechanical properties, dimensional stability and biocompatibility of the gels studied in this work are important parameters for potential biomedical applications of these biomaterials.


2009 ◽  
Vol 1190 ◽  
Author(s):  
Christian Wischke ◽  
Axel Thomas Neffe ◽  
Susi Steuer ◽  
Andreas Lendlein

AbstractShape-memory polymers are of high scientific and technological interest in the biomedical field, e.g., as matrix for self-anchoring implantable devices. In this study, two different star-shaped copolyester tetroles, semi-crystalline oligo[(-caprolactone)-co-glycolide]tetrol (oCG) and amorphous oligo[(rac-lactide)-co-glycolide]tetrol (oLG), were synthesized and subsequently crosslinked by a low molecular weight diisocyanate resulting in copolyester urethane networks (N-CG, N-LG). Both networks could be loaded with model drugs and a diffusion controlled release of the drugs was observed without any effect on the mass loss as measure of hydrolytic degradation. However, the N-CG network’s capability of shape programming was disturbed as the crystallinity of the precursors got lost in the complex three dimensional architecture after crosslinking. By contrast, amorphous N-LG network showed an excellent shape-memory capability with a switching temperature around 36 °C corresponding to their glass transition temperature. This led to triple-functional materials combining biodegradability, shape-memory, and controlled drug release.


Sign in / Sign up

Export Citation Format

Share Document