A Practical Procedure for the Synthesis of Esonarimod, (R,S)-2-Acetylthiomethyl-4- (4-methylphenyl)-4-oxobutanoic Acid, an Antirheumatic Agent. II

2003 ◽  
Vol 33 (15) ◽  
pp. 2657-2670 ◽  
Author(s):  
Toshiya Noguchi ◽  
Akira Onodera ◽  
Masato Ito ◽  
Mamoru Yoshida ◽  
Sadakazu Yokomori
ChemInform ◽  
2003 ◽  
Vol 34 (45) ◽  
Author(s):  
Toshiya Noguchi ◽  
Akira Onodera ◽  
Masato Ito ◽  
Mamoru Yoshida ◽  
Sadakazu Yokomori

1988 ◽  
Vol 102 ◽  
pp. 107-110
Author(s):  
A. Burgess ◽  
H.E. Mason ◽  
J.A. Tully

AbstractA new way of critically assessing and compacting data for electron impact excitation of positive ions is proposed. This method allows one (i) to detect possible printing and computational errors in the published tables, (ii) to interpolate and extrapolate the existing data as a function of energy or temperature, and (iii) to simplify considerably the storage and transfer of data without significant loss of information. Theoretical or experimental collision strengths Ω(E) are scaled and then plotted as functions of the colliding electron energy, the entire range of which is conveniently mapped onto the interval (0,1). For a given transition the scaled Ω can be accurately represented - usually to within a fraction of a percent - by a 5 point least squares spline. Further details are given in (2). Similar techniques enable thermally averaged collision strengths upsilon (T) to be obtained at arbitrary temperatures in the interval 0 < T < ∞. Application of the method is possible by means of an interactive program with graphical display (2). To illustrate this practical procedure we use the program to treat Ω for the optically allowed transition 2s → 2p in ArXVI.


1995 ◽  
Vol 60 (6) ◽  
pp. 1026-1033 ◽  
Author(s):  
Miroslav Kuchař ◽  
Václav Vosátka ◽  
Marie Poppová ◽  
Eva Knězová ◽  
Vladimíra Panajotovová ◽  
...  

Analogs of 4-(2',4'-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid (I, flobufen), containing a double bond (II, IV, V, VII, VIII) or a methyl group in position 3 (VI) were prepared. Their antiinflammatory activity was evaluated and compared with that of flobufen. None of the mentioned analogs reached the activity of the standard. Isomerization of the unsaturated derivatives is connected with a shift of the double bond, Z-E transformation or lactonization. Reaction conditions and spectra of the compounds prepared are described.


2021 ◽  
Vol 13 (14) ◽  
pp. 7737
Author(s):  
Amin Soltani ◽  
Mahdieh Azimi ◽  
Brendan C. O’Kelly

This study aims at modeling the compaction characteristics of fine-grained soils blended with sand-sized (0.075–4.75 mm) recycled tire-derived aggregates (TDAs). Model development and calibration were performed using a large and diverse database of 100 soil–TDA compaction tests (with the TDA-to-soil dry mass ratio ≤ 30%) assembled from the literature. Following a comprehensive statistical analysis, it is demonstrated that the optimum moisture content (OMC) and maximum dry unit weight (MDUW) for soil–TDA blends (across different soil types, TDA particle sizes and compaction energy levels) can be expressed as universal power functions of the OMC and MDUW of the unamended soil, along with the soil to soil–TDA specific gravity ratio. Employing the Bland–Altman analysis, the 95% upper and lower (water content) agreement limits between the predicted and measured OMC values were, respectively, obtained as +1.09% and −1.23%, both of which can be considered negligible for practical applications. For the MDUW predictions, these limits were calculated as +0.67 and −0.71 kN/m3, which (like the OMC) can be deemed acceptable for prediction purposes. Having established the OMC and MDUW of the unamended fine-grained soil, the empirical models proposed in this study offer a practical procedure towards predicting the compaction characteristics of the soil–TDA blends without the hurdles of performing separate laboratory compaction tests, and thus can be employed in practice for preliminary design assessments and/or soil–TDA optimization studies.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


2014 ◽  
Vol 70 (7) ◽  
pp. o779-o780
Author(s):  
B. Narayana ◽  
Prakash S. Nayak ◽  
Balladka K. Sarojini ◽  
Jerry P. Jasinski

In the title compound, C11H10BrNO3, two independent molecules (AandB) crystallize in the asymmetric unit. The dihedral angles between the mean planes of the 4-bromophenyl ring and amide group are 24.8 (7) in moleculeAand 77.1 (6)° in moleculeB. The mean plane of the methylidene group is further inclined by 75.6 (4) in moleculeAand 72.5 (6)° in moleculeBfrom that of the amide group. In the crystal, N—H...O hydrogen bonds formed by amide groups and O—H...O hydrogen bonds formed by carboxylic acid groups are observed and supported additionally by weak C—H...O interactions between the methylidene and amide groups. Together, these link the molecules into chains of dimers along [110] and formR22(8) graph-set motifs.


Sign in / Sign up

Export Citation Format

Share Document