Faculty Opinions recommendation of A safe and practical procedure for global deprotection of oligoribonucleotides.

Author(s):  
Scott Silverman
Keyword(s):  
1988 ◽  
Vol 102 ◽  
pp. 107-110
Author(s):  
A. Burgess ◽  
H.E. Mason ◽  
J.A. Tully

AbstractA new way of critically assessing and compacting data for electron impact excitation of positive ions is proposed. This method allows one (i) to detect possible printing and computational errors in the published tables, (ii) to interpolate and extrapolate the existing data as a function of energy or temperature, and (iii) to simplify considerably the storage and transfer of data without significant loss of information. Theoretical or experimental collision strengths Ω(E) are scaled and then plotted as functions of the colliding electron energy, the entire range of which is conveniently mapped onto the interval (0,1). For a given transition the scaled Ω can be accurately represented - usually to within a fraction of a percent - by a 5 point least squares spline. Further details are given in (2). Similar techniques enable thermally averaged collision strengths upsilon (T) to be obtained at arbitrary temperatures in the interval 0 < T < ∞. Application of the method is possible by means of an interactive program with graphical display (2). To illustrate this practical procedure we use the program to treat Ω for the optically allowed transition 2s → 2p in ArXVI.


2021 ◽  
Vol 13 (14) ◽  
pp. 7737
Author(s):  
Amin Soltani ◽  
Mahdieh Azimi ◽  
Brendan C. O’Kelly

This study aims at modeling the compaction characteristics of fine-grained soils blended with sand-sized (0.075–4.75 mm) recycled tire-derived aggregates (TDAs). Model development and calibration were performed using a large and diverse database of 100 soil–TDA compaction tests (with the TDA-to-soil dry mass ratio ≤ 30%) assembled from the literature. Following a comprehensive statistical analysis, it is demonstrated that the optimum moisture content (OMC) and maximum dry unit weight (MDUW) for soil–TDA blends (across different soil types, TDA particle sizes and compaction energy levels) can be expressed as universal power functions of the OMC and MDUW of the unamended soil, along with the soil to soil–TDA specific gravity ratio. Employing the Bland–Altman analysis, the 95% upper and lower (water content) agreement limits between the predicted and measured OMC values were, respectively, obtained as +1.09% and −1.23%, both of which can be considered negligible for practical applications. For the MDUW predictions, these limits were calculated as +0.67 and −0.71 kN/m3, which (like the OMC) can be deemed acceptable for prediction purposes. Having established the OMC and MDUW of the unamended fine-grained soil, the empirical models proposed in this study offer a practical procedure towards predicting the compaction characteristics of the soil–TDA blends without the hurdles of performing separate laboratory compaction tests, and thus can be employed in practice for preliminary design assessments and/or soil–TDA optimization studies.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


2021 ◽  
Vol 68 (3-4) ◽  
pp. 22-28
Author(s):  
Bettina Ronai ◽  
Rainer Franz ◽  
Marcella Frauscher

Water and solid particulate contamination are the two most common contaminants of lubricated systems and may be highly problematic for these systems. To reduce downtime and prevent failure, lubricant formulations contain detergent and dispersant additives that play an important role in terms of contamination tolerance. In lack of a practical procedure for the determination of the relevant properties, a novel method for the evaluation of the dispersing ability of lubricating oils is introduced. Following and combining established lubricant analysis methods, a procedure with optimum parameters was found. An assessment of the method using fresh and artificially altered lubricating oils allowed a differentiation concerning their dispersing ability.


2018 ◽  
Vol 42 (4) ◽  
pp. 439-452 ◽  
Author(s):  
A.D. Marter ◽  
A.S. Dickinson ◽  
F. Pierron ◽  
M. Browne
Keyword(s):  

1986 ◽  
Vol 13 (1) ◽  
pp. 46-52 ◽  
Author(s):  
V. W.-T. Cheung ◽  
W. K. Tso

To evaluate the seismic torsional effect on multistory buildings, the concept of eccentricity is extended from single-story buildings to multistory buildings by defining the locations of the centers of rigidity at each floor. A practical procedure to locate the centers of rigidity and hence floor eccentricity is introduced. This procedure depends on the use of plane frame computer programs only and is suitable for use in design offices. The seismic torsional provisions in the National Building Code of Canada 1985 (NBCC 1985) explicitly emphasize that the code provisions apply to buildings where the centres of rigidity lie on a vertical axis only. By means of examples, it verifies the claim of NBCC 1985. Also, it shows that, for buildings with centers of rigidity scattered from a vertical axis, the code procedure may or may not apply. Therefore, one should interpret the condition of centers of rigidity located along a vertical axis to be a sufficient, but not a necessary, condition for the NBCC 85 code provisions to be applicable. Until the necessary conditions are known, dynamic analysis remains the most reliable method to assign the torsional effects to various portions of the building. Key words: building code, center of rigidity, dynamic analysis, eccentricity, irregular, multistory, seismic, torsion.


1993 ◽  
Vol 18 (3) ◽  
pp. 218-227 ◽  
Author(s):  
Richard E. Mattison ◽  
James C. Lynch ◽  
Helen Kales ◽  
Alan D. Gamble

Achenbach and Edelbrock teacher and parent checklists were used to develop a practical procedure to assist educators in determining if a boy with behavioral/emotional dysfunction in elementary school requires mental health referral or SED evaluation. SED, psychiatric outpatient, and general population Caucasian boys ages 6 to 11 years were compared. Appropriately, scores for the SED and the outpatient groups were pathological and significantly greater than scores for the general population group on both checklists, while SED scores were significantly higher than outpatient scores on the teacher checklist. Logistic regression analyses showed the Total Problem scales of both checklists to be the most efficient and economical scales for classification. Finally, probability tables were constructed to distinguish SED and outpatient boys from general population boys, and SED boys from outpatient boys.


2021 ◽  
Vol 12 ◽  
Author(s):  
Da-Ke Zhao ◽  
Marc-André Selosse ◽  
Limin Wu ◽  
Yan Luo ◽  
Shi-Cheng Shao ◽  
...  

Orchids are among the most endangered in the plant kingdom. Lack of endosperm in their seeds renders orchids to depend on nutrients provided by orchid mycorrhizal fungi (OMF) for seed germination and seedling formation in the wild. OMF that parasitize in germination seeds is an essential element for orchid seedling formation, which can also help orchid reintroduction. Considering the limitations of the previous orchid reintroduction technology based on seed germination-promoting OMF (sgOMF) sourced from orchid roots, an innovative approach is proposed here in which orchid seeds are directly co-sown with sgOMF carrying ecological specificity from protocorms/seedlings. Based on this principle, an integrative and practical procedure concerning related ecological factors is further raised for re-constructing long-term and self-sustained orchid populations. We believe that this new approach will benefit the reintroduction of endangered orchids in nature.


Sign in / Sign up

Export Citation Format

Share Document