scholarly journals Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: kinetics of fusion monitored by quantitative light-scattering microscopy.

1985 ◽  
Vol 101 (6) ◽  
pp. 2398-2410 ◽  
Author(s):  
J Zimmerberg ◽  
C Sardet ◽  
D Epel

We have used the isolated planar cortex of sea urchin eggs to examine the role of osmotic forces in exocytosis by morphological and physiological methods. Electron micrographs of rotary-shadowed replicas show an en face view of exocytosis and demonstrate fusion of cortical vesicles to the underlying oolemma upon addition of calcium. Freeze-fracture replicas of rapidly frozen cortices reveal specialized attachment sites between cortical vesicles and the oolemma, and between the cortical vesicles themselves. We describe a novel light scattering assay for the kinetics of fusion which allows rapid changes of solutions and monitors exocytosis in real time. The rate and extent of fusion are found to be calcium dependent. The removal of calcium halts exocytosis. The validation of exocytosis in this system and development of tools for kinetic analysis allowed us to test predictions of the osmotic hypothesis of exocytosis: hyperosmotic media should inhibit exocytosis; calcium should cause vesicular swelling. Cortical vesicles were found to be permeant to sucrose, glucose, and urea. In media made hyperosmotic with 1.7 M sucrose, cortical vesicles were seen to shrink. Addition of calcium in hyperosmotic media led to a 10-fold decrease in the rate of exocytosis compared with the isotonic rate. The rate, while triggered by calcium, was no longer calcium-dependent. This slowing of exocytosis allowed us to photograph the swelling of cortical vesicles caused by calcium. Removal of calcium had no effect on subsequent exocytosis. Return of cortices to isotonic medium without calcium led to immediate exocytosis. These results are consistent with the idea that swelling of cortical vesicles is required for fusion of biological membranes.

1980 ◽  
Vol 87 (1) ◽  
pp. 248-254 ◽  
Author(s):  
W H Kinsey ◽  
G L Decker ◽  
W J Lennarz

The cell surface complex (Detering et al., 1977, J. Cell Biol. 75, 899-914) of the sea urchin egg consists of two subcellular organelles: the plasma membrane, containing associated peripheral proteins and the vitelline layer, and the cortical vesicles. We have now developed a method of isolating the plasma membrane from this complex and have undertaken its biochemical characterization. Enzymatic assays of the cell surface complex revealed the presence of a plasma membrane marker enzyme, ouabain-sensitive Na+/K+ ATPase, as well as two cortical granule markers, proteoesterase and ovoperoxidase. After separation from the cortical vesicles and purification on a sucrose gradient, the purified plasma membranes are recovered as large sheets devoid of cortical vesicles. The purified plasma membranes are highly enriched in the Na+/K+ ATPase but contain only very low levels of the proteoesterase and ovoperoxidase. Ultrastructurally, the purified plasma membrane is characterized as large sheets containing a "fluffy" proteinaceous layer on the external surface, which probably represent peripheral proteins, including remnants of the vitelline layer. Extraction of these membranes with Kl removes these peripheral proteins and causes the membrane sheets to vesiculate. Polyacrylamide gel electrophoresis of the cell surface complex, plasma membranes, and Kl-extracted membranes indicates that the plasma membrane contains five to six major proteins species, as well as a large number of minor species, that are not extractable with Kl. The vitelline layer and other peripheral membrane components account for a large proportion of the membrane-associated protein and are represented by at least six to seven polypeptide components. The phospholipid composition of the Kl-extracted membranes is unique, being very rich in phosphatidylethanolamine and phosphatidylinositol. Cholesterol was found to be a major component of the plasma membrane. Before Kl extraction, the purified plasma membranes retain the same species-specific sperm binding property that is found in the intact egg. This observation indicates that the sperm receptor mechanisms remain functional in the isolated, cortical vesicle-free membrane preparation.


Methods ◽  
1994 ◽  
Vol 6 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Nadeem I. Shafi ◽  
Steven S. Vogel ◽  
Joshua Zimmerberg

1988 ◽  
Vol 10 (1-2) ◽  
pp. 197-209 ◽  
Author(s):  
Lionel I. Rebhun ◽  
Robert E. Palazzo
Keyword(s):  

2000 ◽  
Vol 352 (3) ◽  
pp. 725-729 ◽  
Author(s):  
Sandip PATEL ◽  
Grant C. CHURCHILL ◽  
Antony GALIONE

Nicotinic acidŐadenine dinucleotide phosphate (NAADP) is a novel and potent Ca2+-mobilizing agent in sea urchin eggs and other cell types. Little is known, however, concerning the properties of the putative intracellular NAADP receptor. In the present study we have characterized NAADP binding sites in sea urchin egg homogenates. [32P]NAADP bound to a single class of high-affinity sites that were reversibly inhibited by NaCl but insensitive to pH and Ca2+. Binding of [32P]NAADP was lost in preparations that did not mobilize Ca2+ in response to NAADP, indicating that [32P]NAADP probably binds to a receptor mediating Ca2+ mobilization. Addition of excess unlabelled NAADP, at various times after initiation of [32P]NAADP binding, did not result in displacement of bound [32P]NAADP. These data show that NAADP becomes irreversibly bound to its receptor immediately upon association. Accordingly, incubation of homogenates with low concentrations of NAADP resulted in maximal labelling of NAADP binding sites. This unique property renders NAADP receptors exquisitely sensitive to their ligand, thereby allowing detection of minute changes in NAADP levels.


2001 ◽  
Vol 118 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Paul S. Blank ◽  
Steven S. Vogel ◽  
James D. Malley ◽  
Joshua Zimmerberg

Although the relationship between exocytosis and calcium is fundamental both to synaptic and nonneuronal secretory function, analysis is problematic because of the temporal and spatial properties of calcium, and the fact that vesicle transport, priming, retrieval, and recycling are coupled. By analyzing the kinetics of sea urchin egg secretory vesicle exocytosis in vitro, the final steps of exocytosis are resolved. These steps are modeled as a three-state system: activated, committed, and fused, where interstate transitions are given by the probabilities that an active fusion complex commits (α) and that a committed fusion complex results in fusion, p. The number of committed complexes per vesicle docking site is Poisson distributed with mean n. Experimentally, p and n increase with increasing calcium, whereas α and the pn ratio remain constant, reducing the kinetic description to only one calcium-dependent, controlling variable, n. On average, the calcium dependence of the maximum rate (Rmax) and the time to reach Rmax (Tpeak) are described by the calcium dependence of n. Thus, the nonlinear relationship between the free calcium concentration and the rate of exocytosis can be explained solely by the calcium dependence of the distribution of fusion complexes at vesicle docking sites.


1998 ◽  
Vol 112 (5) ◽  
pp. 559-567 ◽  
Author(s):  
Paul S. Blank ◽  
Myoung-Soon Cho ◽  
Steven S. Vogel ◽  
Doron Kaplan ◽  
Albert Kang ◽  
...  

A graded response to calcium is the defining feature of calcium-regulated exocytosis. That is, there exist calcium concentrations that elicit submaximal exocytotic responses in which only a fraction of the available population of secretory vesicles fuse. The role of calcium-dependent inactivation in defining the calcium sensitivity of sea urchin egg secretory vesicle exocytosis in vitro was examined. The cessation of fusion in the continued presence of calcium was not due to calcium-dependent inactivation. Rather, the calcium sensitivity of individual vesicles within a population of exocytotic vesicles is heterogeneous. Any specific calcium concentration above threshold triggered subpopulations of vesicles to fuse and the size of the subpopulations was dependent upon the magnitude of the calcium stimulus. The existence of multiple, stable subpopulations of vesicles is consistent with a fusion process that requires the action of an even greater number of calcium ions than the numbers suggested by models based on the assumption of a homogeneous vesicle population.


Author(s):  
Joanita Jakana ◽  
Robert Edwards ◽  
Joseph Bryan ◽  
Michael F. Schmid ◽  
Wah Chiu

Fascin is a 55 kDa actin filament bundling protein first isolated from sea urchin egg actin gels by Kane. These gels consist of actin-fascin bundles cross linked by spectrin. Purified actin and fascin produce bundles when mixed in vitro, with an actin-fascin stoichiometry of 4.6 to 1 at saturation. Cloning of sea urchin fascin cDNA revealed homology to an uncharacterized Drosophila protein called singed. The singed phenotype, misshapen bristles and female sterility, canbe explained by a lack of actin bundles and Cant el al has shown recently that the singed gene product can bundle actin. Mammalian fascins have now been cloned from humans and mice. Murinefascin is highly expressed in brain; immunofluorescence reveals fascin localized to filopodia extending from the leading edge of hippocampal neuron growth cones.A soluble, active recombinant mouse fascin has been produced as a fusion protein with E. coli thioredoxin. When mixed with F-actin this fusion protein produces bundles with an actin-fascin ratio of approximately 4.1:1. The bundle was frozen in a thin layer of vitreous ice and examined at 400 kV in the JEOL 4000 electron microscope under low dose condition with a procedure previously described.


Sign in / Sign up

Export Citation Format

Share Document