scholarly journals Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions

1987 ◽  
Vol 104 (4) ◽  
pp. 905-916 ◽  
Author(s):  
DE Vega-Salas ◽  
PJ Salas ◽  
D Gundersen ◽  
E Rodriguez-Boulan

The time course of development of polarity of an apical (184-kD) and a basolateral (63-kD) plasma membrane protein of Madin-Darby canine kidney cells was followed using semiquantitative immunofluorescence on semithin (approximately 0.5-micron) frozen sections and monoclonal antibody probes. The 184-kD protein became highly polarized to the apical pole within the initial 24 h both in normal medium and in 1-5 microM Ca2+, which results in well-spread, dome-shaped cells, lacking tight junctions and other lateral membrane interactions. In contrast, the basolateral 63-kD membrane protein developed full polarity only after incubation in normal Ca2+ concentrations for greater than 72 h, a time much longer than that required for the formation of tight junctions (approximately 18 h) and failed to polarize in 1-5 microM Ca2+. These results demonstrate that intradomain restriction mechanisms independent of tight junctions, such as self-aggregation or specific interactions with the submembrane cytoskeleton, participate in the regionalization of at least some epithelial plasma membrane proteins. The full operation of these mechanisms depends on the presence of normal cell-cell interactions in the case of the basolateral 63-kD antigen but not in the case of the apical 184-kD protein.

1988 ◽  
Vol 107 (6) ◽  
pp. 2389-2399 ◽  
Author(s):  
J D Siliciano ◽  
D A Goodenough

Using the monoclonal antibody R26.4, we have previously identified a approximately 225-kD peripheral membrane protein, named ZO-1, that is uniquely associated with the tight junction (zonula occludens) in a variety of epithelia including the Madin-Darby canine kidney (MDCK) epithelial cell line (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766). In this study we have analyzed the effects of cell-cell contact and extracellular calcium on the localization and the solubility of ZO-1. In confluent monolayers under normal calcium conditions, ZO-1 immunoreactivity is found exclusively at the plasma membrane in the region of the junctional complex. If MDCK cells are maintained in spinner culture under low calcium conditions, ZO-1 is diffusely organized within the cytoplasm. After the plating of suspension cells at high cell density in medium with normal calcium concentrations, ZO-1 becomes localized to the plasma membrane at sites of cell-cell contact within 5 h in a process that is independent of de novo protein synthesis. However, if suspension cells are plated at high density in low calcium medium or if suspension cells are plated at low cell density in normal calcium growth medium, ZO-1 remains diffusely organized. ZO-1 localization also becomes diffuse in monolayers that have been established in normal calcium medium and then subsequently switched into low calcium medium. These results suggest that both extracellular calcium and cell-cell contact are necessary for normal localization of ZO-1 to the plasma membrane. An analysis of the solubility properties of ZO-1 from suspension cells and monolayers revealed that high salt, nonionic detergent, and a buffer containing chelators were somewhat more effective at solubilizing ZO-1 from suspension cells than from monolayers.


2013 ◽  
Vol 24 (18) ◽  
pp. 2820-2833 ◽  
Author(s):  
Hiroshi Tokuo ◽  
Lynne M. Coluccio

Cooperation between cadherins and the actin cytoskeleton controls the formation and maintenance of cell–cell adhesions in epithelia. We find that the molecular motor protein myosin-1c (Myo1c) regulates the dynamic stability of E-cadherin–based cell–cell contacts. In Myo1c-depleted Madin–Darby canine kidney cells, E-cadherin localization was dis­organized and lateral membranes appeared less vertical with convoluted edges versus control cells. In polarized monolayers, Myo1c-knockdown (KD) cells were more sensitive to reduced calcium concentration. Myo1c separated in the same plasma membrane fractions as E-cadherin, and Myo1c KD caused a significant reduction in the amount of E-cadherin recovered in one peak fraction. Expression of green fluorescent protein (GFP)–Myo1c mutants revealed that the phosphatidylinositol-4,5-bisphosphate–binding site is necessary for its localization to cell–cell adhesions, and fluorescence recovery after photobleaching assays with GFP-Myo1c mutants revealed that motor function was important for Myo1c dynamics at these sites. At 18°C, which inhibits vesicle recycling, Myo1c-KD cells accumulated more E-cadherin–positive vesicles in their cytoplasm, suggesting that Myo1c affects E-cadherin endocytosis. Studies with photoactivatable GFP–E-cadherin showed that Myo1c KD reduced the stability of E-cadherin at cell–cell adhesions. We conclude that Myo1c stabilizes E-cadherin at adherens junctions in polarized epithelial cells and that the motor function and ability of Myo1c to bind membrane are critical.


2000 ◽  
Vol 11 (3) ◽  
pp. 849-862 ◽  
Author(s):  
Yan-hua Chen ◽  
Qun Lu ◽  
Eveline E. Schneeberger ◽  
Daniel A. Goodenough

In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell–cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin–mediated cell–cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell–cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell–cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.


2012 ◽  
Vol 302 (2) ◽  
pp. R300-R311 ◽  
Author(s):  
M. B. Engelund ◽  
A. S. L. Yu ◽  
J. Li ◽  
S. S. Madsen ◽  
N. J. Færgeman ◽  
...  

Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon ( Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin is associated with remodeling of the epithelium during salinity change. This study investigated localization, protein expression, and function of claudin 30. Confocal microscopy showed that claudin 30 protein was located at cell-cell interfaces in the gill filament in SW- and fresh water (FW)-acclimated salmon, with the same distribution, overall, as the tight junction protein ZO-1. Claudin 30 was located at the apical tight junction interface and in cell membranes deeper in the epithelia. Colocalization with the α-subunit of the Na+-K+-ATPase was negligible, suggesting limited association with mitochondria-rich cells. Immunoblotting of gill samples showed lower claudin 30 protein expression in SW than FW fish. Retroviral transduction of claudin 30 into Madin-Darby canine kidney cells resulted in a decreased conductance of 19%. The decreased conductance correlated with a decreased permeability of the cell monolayer to monovalent cations, whereas permeability to chloride was unaffected. Confocal microscopy revealed that claudin 30 was expressed in the lateral membrane, as well as in tight junctions of Madin-Darby canine kidney cells, thereby paralleling the findings in the native gill. This study suggests that claudin 30 functions as a cation barrier between pavement cells in the gill and also has a general role in cell-cell adhesion in deeper layers of the epithelium.


1983 ◽  
Vol 97 (5) ◽  
pp. 1365-1374 ◽  
Author(s):  
G van Meer ◽  
K Simons

An efficient method has been devised to introduce lipid molecules into the plasma membrane of mammalian cells. This method has been applied to fuse lipid vesicles with the apical plasma membrane of Madin-Darby canine kidney cells. The cells were infected with fowl plague or influenza N virus. 4 h after infection, the hemagglutinin (HA) spike glycoprotein of the virus was present in the apical plasma membrane of the cells. Lipid vesicles containing egg phosphatidylcholine, cholesterol, and an HA receptor (ganglioside) were then bound to the cells at 0 degrees C. More than 85% of the vesicles were released by external neuraminidase at 0 degrees C or by simply warming the cells to 37 degrees C for 10 s, probably because of the action of the viral neuraminidase at the cell surface. However, when the cells were warmed to 37 degrees C in a pH 5.3 medium for 30 s, 50% of the bound vesicles could no longer be released by external neuraminidase. This only occurred when the HA protein had been cleaved into its HA1 and HA2 subunits. When we used influenza N virus, whose HA is not cleaved in Madin-Darby canine kidney cells, cleavage with external trypsin was required. The fact that the HA protein has fusogenic properties at low pH only in its cleaved form suggests that fusion of the vesicles with the plasma membrane had taken place. Further confirmation for fusion was obtained using an assay based on the decrease of energy transfer between two fluorescent phospholipids in a vesicle upon fusion of the vesicle with the plasma membrane (Struck, D. K., D. Hoekstra, and R. E. Pagano. 1981. Biochemistry, 20:4093-4099).


1984 ◽  
Vol 99 (3) ◽  
pp. 796-782 ◽  
Author(s):  
M Pesonen ◽  
W Ansorge ◽  
K Simons

The G protein of vesicular stomatitis virus, implanted into the apical plasma membrane of Madin-Darby canine kidney cells, is rapidly transcytosed to the basolateral membrane. In this and the accompanying paper (Pesonen, M., R. Bravo, and K. Simons, 1984, J. Cell Biol. 99:803-809.) we have studied the intracellular route by which the G protein traverses during transcytosis. Using Percoll density gradient centrifugation and free flow electrophoresis we could demonstrate that the G protein is endocytosed into a nonlysosomal compartment with a density of approximately 1.05 g/cm3, which has many of the characteristics of endosomes. Transcytosis to the basolateral membrane appeared to occur from this compartment. No direct evidence for the involvement of lysosomes in the transcytotic route could be obtained. No G protein was detected in the lysosomes when transcytosis of G protein was occurring. Moreover, at 21 degrees C when passage of G protein to the lysosomes was shown to be arrested, transcytosis of G protein could still be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document