scholarly journals Induction of platelet-derived growth factor receptor expression in smooth muscle cells and fibroblasts upon tissue culturing.

1988 ◽  
Vol 107 (5) ◽  
pp. 1947-1957 ◽  
Author(s):  
L Terracio ◽  
L Rönnstrand ◽  
A Tingström ◽  
K Rubin ◽  
L Claesson-Welsh ◽  
...  

The expression of platelet-derived growth factor (PDGF) receptors in porcine uterus and human skin in situ, was compared with that of cultured primary cells isolated from the same tissues. PDGF receptor expression was examined by monoclonal antibodies specific for the B type PDGF receptor and by RNA/RNA in situ hybridization with a probe constructed from a cDNA clone encoding the B type PDGF receptor. In porcine uterus tissue both mRNA and the protein product for the PDGF receptor were detected in the endometrium; the myometrium, in contrast, contained much lower amounts. Moreover, freshly isolated myometrial cells were devoid of PDGF receptors. However, after 1 d in culture receptors appeared, and after 2 wk of culturing essentially all of the myometrial cells stained positively with the anti-PDGF receptor antibodies and contained PDGF receptor mRNA. Similarly, B type PDGF receptors were not detected in normal human skin, but fibroblast-like cells from explant cultures of human skin possessed PDGF receptors. When determined by immunoblotting, porcine uterus myometrial membranes contained approximately 20% of the PDGF receptor antigen compared with the amount found in endometrial membranes. In addition, PDGF stimulated the phosphorylation of a 175-kD component, most likely representing autophosphorylation of the B type PDGF receptor in endometrial membranes, whereas only a marginal phosphorylation was seen in myometrial membranes. Taken together, these results demonstrate that PDGF receptor expression varies in normal tissues and that fibroblasts and smooth muscle cells do not uniformly express the receptor in situ. Furthermore, fibroblasts and smooth muscle cells that are released from tissues are induced to express PDGF receptors in response to cell culturing. The data suggest that, in addition to the availability of the ligand, PDGF-mediated cell growth in vivo is dependent on factors regulating expression of the receptor.

1997 ◽  
Vol 326 (3) ◽  
pp. 709-716 ◽  
Author(s):  
Philip J. HOGG ◽  
Kylie A. HOTCHKISS ◽  
Barbara M. JIMÉNEZ ◽  
Paul STATHAKIS ◽  
Colin N. CHESTERMAN

Key factors that mediate vascular smooth muscle cell proliferation and migration are platelet-derived growth factor (PDGF) and thrombospondin 1 (TSP1). We now report that PDGFBB bound tightly and specifically to TSP1, that this interaction was markedly dependent on the disulphide bond arrangement in TSP1, and that binding of PDGFBB to TSP1 did not preclude PDGFBB from binding to its receptor on rat aortic vascular smooth-muscle cells. At physiological ionic strength and pH, PDGFBB bound to Ca2+-depleted TSP1 with a dissociation constant of 11±2 nM and to Ca2+-replete TSP1 with a dissociation constant of 32±5 nM. Binding was specific, as both soluble TSP1 and unlabelled PDGFBB competed for binding of iodinated PDGFBB to immobilized TSP1, whereas other platelet α-granule proteins did not compete. The tertiary structure of TSP1 is regulated by intramolecular disulphide interchange; we found that catalysis of disulphide interchange in TSP1 by protein disulphide isomerase ablated the binding of PDGFBB. The interaction of PDGFBB with TSP1 was weakened by increasing salt concentration and essentially ablated at 0.65 ionic strength; it was inhibited by heparin with a half-maximal effect at 20 i.u./ml, implying that the binding was mediated largely by ionic interactions. An anti TSP1 monoclonal antibody decreased the binding of iodinated PDGFBB to PDGF receptor on rat aortic vascular smooth-muscle cells by 37±2%, whereas platelet TSP1 non-competitively inhibited binding of iodinated PDGFBB. Uncomplexed PDGFBB bound to PDGF receptor with an affinity 5±2 times that of PDGFBB–TSP1 complexes. These results suggest that TSP1 might assist in the targeting of PDGF to its receptor on vascular smooth-muscle cells.


Sign in / Sign up

Export Citation Format

Share Document