scholarly journals An insulin epidermal growth factor-binding protein from Drosophila has insulin-degrading activity.

1989 ◽  
Vol 108 (1) ◽  
pp. 177-182 ◽  
Author(s):  
J V Garcia ◽  
M P Stoppelli ◽  
S J Decker ◽  
M R Rosner

We have recently described the purification and characterization of an insulin-degrading enzyme (IDE) from Drosophila melanogaster that can cleave porcine insulin, is highly conserved through evolution and is developmentally regulated. We now report that the IDE is, in fact, an insulin EGF-binding protein (dp100) that we had isolated previously from Drosophila using an antihuman EGF receptor antiserum. This conclusion is based upon the following evidence. (a) dp100, identified by its ability to cross-link to labeled insulin, EGF, and transforming growth factor-alpha (TGF-alpha), and to be immunoprecipitated by anti-EGF receptor antisera, copurifies with the IDE activity. Thus, the purified IDE can be affinity labeled with either 125I-insulin, 125I-EGF, or 125I-TGF-alpha, and this labeling is specifically inhibited with unlabeled insulin, EGF, and the insulin B chain. (b) The antiserum to the human EGF receptor, which recognizes dp100, is able to specifically immunoprecipitate the insulin-degrading activity. (c) The purified IDE preparation contains a single protein of 110 kD which is recognized by both the anti-EGF receptor antiserum and anti-Drosophila IDE antiserum. (d) Polyclonal antiserum to the purified IDE, which specifically recognized only the 110-kD band in Drosophila Kc cells, immunoprecipitates dp100 cross-linked to 125I-TGF-alpha and dp100 cross-linked to 125I-insulin from the purified IDE preparation. (e) EGF, which competes with insulin for binding to dp100, also inhibits the degradation of insulin by the purified IDE. These results raise the possibility that a functional interaction between the insulin and EGF growth factor families can occur which is mediated by the insulin-degrading enzyme.

1990 ◽  
Vol 259 (2) ◽  
pp. E256-E260 ◽  
Author(s):  
P. I. Brown ◽  
R. Lam ◽  
J. Lakshmanan ◽  
D. A. Fisher

Transforming growth factor-alpha (TGF-alpha) concentrations were measured in lung, brain, liver, and kidney of rats at three different ages (20 days gestation and 9 and 50 days postnatal). TGF-alpha concentrations were maximal in the lung and brain by 20 days of gestation and showed minimal changes during nursing (day 9) and young adulthood (day 50). The liver, which also showed maximal TGF-alpha concentration by 20 days of gestation, demonstrated a progressive reduction with age to nadir values in the young adult. In contrast to the pattern in other tissues, kidney had the lowest concentration of TGF-alpha in late gestation and showed an increase by 50 days of age. As TGF-alpha acts via the epidermal growth factor (EGF) receptor, its function in development may be analogous to that of EGF. Thus TGF-alpha may have a role in lung maturation and postinjury repair, liver repair and regeneration, and neuronal cell growth.


Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2385-2392 ◽  
Author(s):  
TM Walz ◽  
C Malm ◽  
BK Nishikawa ◽  
A Wasteson

The expression of transforming growth factor-alpha (TGF-alpha) in human differentiating leukemic cell lines and in circulating human eosinophils prompted the search for an analogous function in normal human bone marrow (BM) cells. Immunohistochemistry, using a monoclonal antibody directed to the mature form of the TGF-alpha molecule, showed TGF-alpha on the erythroblasts of normal donors. This novel property of erythroid cells was found on cells at all stages of maturation, most clearly on nucleated forms but to some extent also on erythrocytes within the BM. The presence of membrane-bound TGF-alpha on erythroblasts was confirmed by immunomagnetic cell sorting with polyclonal TGF-alpha antibodies; the recovered cells consisted almost entirely of erythroblasts. Using another monoclonal antibody directed to TGF-alpha, immunohistochemistry showed a different pattern of positive cells including eosinophilic precursor cells, in accordance with earlier findings in blood eosinophils. In addition, the TGF-alpha immunoreactivity was shown in promyelocytes and neutrophilic myelocytes. The presence of epidermal growth factor (EGF) receptor mRNA in BM cells was demonstrated by reverse transcription polymerase chain reaction, whereas EGF receptor-carrying cells were recognized by immunohistochemistry, using polyclonal antibodies directed to the cytoplasmic part of the EGF receptor. The EGF receptor-positive cell constituted about 3% of the nucleated BM cell population. It was classified as a blastlike cell of myelomonocytic origin by morphologic criteria and CD68 positivity. Our results may indicate a novel function of TGF-alpha in erythrocytic differentiation.


1988 ◽  
Vol 8 (5) ◽  
pp. 1970-1978 ◽  
Author(s):  
I Lax ◽  
A Johnson ◽  
R Howk ◽  
J Sap ◽  
F Bellot ◽  
...  

The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected with the appropriate cDNA constructs and shown to express either chicken or human EGF receptors. Like the human EGF receptor, the chicken EGF receptor is a glycoprotein with an apparent molecular weight of 170,000. Murine EGF bound to the chicken receptor with approximately 100-fold lower affinity than to the human receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors.


1991 ◽  
Vol 261 (6) ◽  
pp. C994-C1000 ◽  
Author(s):  
J. A. Barnard ◽  
W. H. Polk ◽  
H. L. Moses ◽  
R. J. Coffey

Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF) are similar in structure and biological activity. In the present study, the distributions of TGF-alpha mRNA, TGF-alpha immunoreactivity, and TGF-alpha-EGF receptor mRNA were examined in epithelial and nonepithelial compartments of the jejunum, and the effect of TGF-alpha on growth of a jejunal crypt cell line (IEC-6) was determined. Epithelial cells eluted from the rat jejunal cryptvillus axis expressed TGF-alpha mRNA at twofold higher levels in the villus tip than in the crypt and EGF receptor mRNA at sevenfold higher levels in the villus tip. Expression of these two mRNA transcripts in the subepithelium was low. Immunohistochemical staining showed TGF-alpha immunoreactivity predominantly in the epithelium and muscularis. Immunostaining of villus cells was uniform, whereas crypt cells did not stain. IEC-6 cells bound 125I-EGF to a single class of high-affinity (dissociation constant = 833 pM) receptors. EGF and TGF-alpha (10 ng/ml) only modestly stimulated IEC-6 cell growth in the presence of 5% serum but increased expression of the protooncogenes c-jun and c-myc threefold over control cells. These findings suggest that, among the potential physiological roles for TGF-alpha produced by the jejunal epithelium, promotion of cell migration and modulation of fluid and electrolyte transport may be as relatively important as stimulation of cell proliferation.


1987 ◽  
Vol 7 (7) ◽  
pp. 2335-2343 ◽  
Author(s):  
V K Han ◽  
E S Hunter ◽  
R M Pratt ◽  
J G Zendegui ◽  
D C Lee

Previous studies have shown that transforming growth factor alpha is expressed during rodent development. To establish the site(s) of transforming growth factor alpha mRNA expression during rat embryogensis, we performed in situ hybridization and Northern blot analyses on samples of embryonic and maternal tissues at various gestational ages. Our results indicate that the high levels of transforming growth factor alpha mRNA that are observed during early development are the result of expression in the maternal decidua and not in the embryo. Decidual expression appears to be induced after implantation, peaks at day 8, and then slowly declines through day 15 at which time the decidua is being resorbed. Expression of transforming growth factor alpha mRNA is highest in that region of the decidua adjacent to the embryo and is low or nondetectable in the uterus, placenta, and other maternal tissues. The developmentally regulated expression of transforming growth factor alpha mRNA in the decidua, together with the presence of epidermal growth factor receptors in this tissue, suggests that transforming growth factor alpha stimulates proliferation locally through an autocrine mechanism. Since epidermal growth factor receptors are present in the embryo and placenta, transforming growth factor alpha produced in the decidua may also act on these tissues through paracrine or endocrine mechanisms.


Sign in / Sign up

Export Citation Format

Share Document