scholarly journals An unconventional myosin heavy chain gene from Drosophila melanogaster.

1992 ◽  
Vol 119 (4) ◽  
pp. 823-834 ◽  
Author(s):  
K A Kellerman ◽  
K G Miller

As part of a study of cytoskeletal proteins involved in Drosophila embryonic development, we have undertaken the molecular analysis of a 140-kD ATP-sensitive actin-binding protein (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). Analysis of cDNA clones encoding this protein revealed that it represents a new class of unconventional myosin heavy chains. The amino-terminal two thirds of the protein comprises a head domain that is 29-33% identical (60-65% similar) to other myosin heads, and contains ATP-binding, actin-binding and calmodulin/myosin light chain-binding motifs. The carboxy-terminal tail has no significant similarity to other known myosin tails, but does contain a approximately 100-amino acid region that is predicted to form an alpha-helical coiled-coil. Since the unique gene that encodes this protein maps to the polytene map position 95F, we have named the new gene Drosophila 95F myosin heavy chain (95F MHC). The expression profile of the 95F MHC gene is complex. Examination of multiple cDNAs reveals that transcripts are alternatively spliced and encode at least three protein isoforms; in addition, a fourth isoform is detected on Western blots. Developmental Northern and Western blots show that transcripts and protein are present throughout the life cycle, with peak expression occurring during mid-embryogenesis and adulthood. Immunolocalization in early embryos demonstrates that the protein is primarily located in a punctate pattern throughout the peripheral cytoplasm. Most cells maintain a low level of protein expression throughout embryogenesis, but specific tissues appear to contain more protein. We speculate that the 95F MHC protein isoforms are involved in multiple dynamic processes during Drosophila development.

2007 ◽  
Vol 29 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Chun-Shi Liang ◽  
Atsushi Kobiyama ◽  
Atsushi Shimizu ◽  
Takashi Sasaki ◽  
Shuichi Asakawa ◽  
...  

To disclose mechanisms involved in temperature acclimation of fish muscle, we subjected eurythermal fish of medaka Oryzias latipes to cloning of myosin heavy chain genes ( MYHs). We cloned cDNAs encoding fast skeletal muscle myosin heavy chain (MYH) isoforms from cDNA libraries of medaka acclimated to 10 and 30°C and observed that different MYH cDNA clones are expressed in the two temperature-acclimated fish. Subsequently, we isolated several overlapping MYH contigs by shotgun cloning strategy from a medaka genomic library. Contig assembly of the complete medaka MYH ( mMYH) locus of 219 kbp revealed a cluster of tandemly arrayed 11 mMYHs, in which eight genes are actually transcribed, with the remaining three being pseudogenes. Expression analysis of the transcribed genes revealed that two genes were each highly expressed in medaka acclimated to 10 and 30°C, whereas comparatively lower expression levels of the three genes were exclusively observed in medaka acclimated to 30°C. cDNAs of the remaining genes were too underrepresented in the libraries to determine the expression levels, and the transcripts could only be obtained by reverse transcription-polymerase chain reaction. Deduced amino acid sequences in the loop 1 and loop 2 regions of mMYHs were highly variable, suggesting that these isoforms were functionally different. The present findings consolidate our knowledge on teleost MYH multigene family and would provide further insight into the mechanisms by which expressions of individual MYH molecules are fine-tuned with environmental temperature fluctuations with further functional analysis of the genes concerned.


1991 ◽  
Vol 266 (36) ◽  
pp. 24613-24620
Author(s):  
A. Subramaniam ◽  
W.K. Jones ◽  
J. Gulick ◽  
S. Wert ◽  
J. Neumann ◽  
...  

2004 ◽  
Vol 24 (19) ◽  
pp. 8705-8715 ◽  
Author(s):  
Carmen C. Sucharov ◽  
Steve M. Helmke ◽  
Stephen J. Langer ◽  
M. Benjamin Perryman ◽  
Michael Bristow ◽  
...  

ABSTRACT Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure.


Sign in / Sign up

Export Citation Format

Share Document