scholarly journals Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle

1994 ◽  
Vol 124 (3) ◽  
pp. 223-233 ◽  
Author(s):  
CL Rieder ◽  
ED Salmon

We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.

2018 ◽  
Vol 29 (11) ◽  
pp. 1332-1345 ◽  
Author(s):  
Anna H. Klemm ◽  
Agneza Bosilj ◽  
Matko Gluncˇic´ ◽  
Nenad Pavin ◽  
Iva M. Tolic´

During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.


1994 ◽  
Vol 107 (1) ◽  
pp. 285-297 ◽  
Author(s):  
L. Cassimeris ◽  
C.L. Rieder ◽  
E.D. Salmon

We have proposed previously a kinetochore motor-polar ejection model for chromosome congression to the metaphase plate where forces generated at the kinetochore are antagonized by away-from-the pole forces generated within each half-spindle on the chromosome arms. This model was based in large part on observations of the behavior of chromosomes on monopolar spindles. In these cells chromosomes typically become attached to the pole by only one kinetochore fiber. These mono-oriented chromosomes move to positions away from the pole even though they are pulled poleward at their kinetochores. Their arms are also ejected away from the pole when severed from the centromere. Here we have characterized further the properties of monopolar spindles in newt lung epithelial cells to determine the similarities between monopolar and bipolar spindles. We found no significant differences between monopolar and bipolar spindles over the parameters examined, which included: microtubule dynamics as measured by fluorescence redistribution after photobleaching; the ability of polar microtubule arrays to push chromosome arms away from the pole; the dependence of chromosome position relative to the pole on microtubule assembly; the number of kinetochore microtubules per kinetochore; and the directional instability of kinetochore motion during chromosome oscillations poleward and away-from-the-pole. As in bipolar spindles, kinetochore directional instability is characterized by abrupt switching between constant velocity phases of poleward and away-from-the-pole motion. From these data we conclude that the mechanism(s) responsible for chromosome positioning in monopolar spindles are fundamentally the same as those in bipolar spindles; only the geometry of the two spindle forms and the interplay between sister kinetochore directional instabilities are different. We also found no correlation in the kinetochore-to-pole distance with kinetochore microtubule number in monopolar spindles, but a strong qualitative correlation with microtubule density. This finding indicates that oscillations of mono-oriented chromosomes in both monopolar and bipolar spindles occur because chromosomes persist in poleward motion until they reach a density of polar microtubules sufficiently high to promote switching to away-from-the-pole motion. As the kinetochore and chromosome arms move away-from-the-pole, microtubule density decreases and the kinetochore switches to poleward motion, pulling the chromosome arms back into regions of higher microtubule density. The mechanism regulating kinetochore switching between poleward and away-from-the-pole motion is poorly understood, but may depend on tension at the kinetochore generated by pushing forces on the chromosome arms produced by the polar microtubule arrays.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


1988 ◽  
Vol 263 (21) ◽  
pp. 10344-10352
Author(s):  
M Caplow ◽  
J Shanks ◽  
R L Ruhlen

2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Zachary R Gergely ◽  
Patrick J Flynn ◽  
Salvador Montes ◽  
J. Richard McIntosh ◽  
M. D. Betterton

2013 ◽  
Vol 288 (31) ◽  
pp. 22516-22526 ◽  
Author(s):  
Jayant Asthana ◽  
Sonia Kapoor ◽  
Renu Mohan ◽  
Dulal Panda

2005 ◽  
Vol 360 (1455) ◽  
pp. 553-568 ◽  
Author(s):  
E.D Salmon ◽  
D Cimini ◽  
L.A Cameron ◽  
J.G DeLuca

Merotelic kinetochore attachment is a major source of aneuploidy in mammalian tissue cells in culture. Mammalian kinetochores typically have binding sites for about 20–25 kinetochore microtubules. In prometaphase, kinetochores become merotelic if they attach to microtubules from opposite poles rather than to just one pole as normally occurs. Merotelic attachments support chromosome bi-orientation and alignment near the metaphase plate and they are not detected by the mitotic spindle checkpoint. At anaphase onset, sister chromatids separate, but a chromatid with a merotelic kinetochore may not be segregated correctly, and may lag near the spindle equator because of pulling forces toward opposite poles, or move in the direction of the wrong pole. Correction mechanisms are important for preventing segregation errors. There are probably more than 100 times as many PtK1 tissue cells with merotelic kinetochores in early mitosis, and about 16 times as many entering anaphase as the 1% of cells with lagging chromosomes seen in late anaphase. The role of spindle mechanics and potential functions of the Ndc80/Nuf2 protein complex at the kinetochore/microtubule interface is discussed for two correction mechanisms: one that functions before anaphase to reduce the number of kinetochore microtubules to the wrong pole, and one that functions after anaphase onset to move merotelic kinetochores based on the ratio of kinetochore microtubules to the correct versus incorrect pole.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Arman Javadi ◽  
Ravi K Deevi ◽  
Emma Evergren ◽  
Elodie Blondel-Tepaz ◽  
George S Baillie ◽  
...  

PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.


Sign in / Sign up

Export Citation Format

Share Document