metaphase plate
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 39)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Anca Butiuc-Keul ◽  
Ana Coste ◽  
Holger Budahn ◽  
Frank Dunemann ◽  
Anca Farkas ◽  
...  

Hypericum perforatum, H. umbellatum, H. maculatum, and H. hircinum accessions originating from botanical gardens across Europe were examined by flow cytometry and molecular markers. 2C DNA content of 17 Hypericum perforatum accessions (Hp) and the H. perforatum cultivar Topaz amounted to between 1.56 pg and 1.62 pg. In four Hp accessions some individual plants were found with a DNA content corresponding to 6Cx (2.34 - 2.39 pg). All plants of accession Hp8 showed a DNA content of 6Cx (2.41 pg). In root tips of Hp plants with an average DNA amount of 1.58 pg, 32 chromosomes were detected, corresponding to 2n = 4x. This is the first ploidy and/or DNA content report for H. umbellatum, H. maculatum and H. hircinum. H. umbellatum and H. maculatum, each contained 0.76 pg DNA and 16 chromosomes were counted. The 2C DNA content of H. hircinum was 1.00 pg with the best metaphase plate revealing 32 chromosomes. Additionally, a combined marker analysis, based on inter-simple sequence repeats (ISSR) and sequence related amplified polymorphism (SRAP), was conducted to gain a better understanding of diversity especially within the accessions of H. perforatum. A total of 27 (11 ISSR and 16 SRAP) primer combinations were screened, showing 699 bands, of which 661 were polymorphic. UPGMA clustering revealed that accessions from the same geographic area tended to be more closely related, while H. maculatum was grouped separately from all H. perforatum accessions. Both methods have shown similar sensitivities in detecting the genetic diversity of the analyzed genotypes. Our results may be useful for Hypericum breeding programs and the development of effective conservation strategies.


2021 ◽  
Author(s):  
Jonathan U Harrison ◽  
Onur Sen ◽  
Andrew McAinsh ◽  
Nigel Burroughs

Mitotic chromosome segregation is a self-organising process that achieves high fidelity separation of 46 duplicated chromosomes into two daughter cells. Chromosomes must be captured by the microtubule-based spindle, aligned at the spindle equator where they undergo oscillatory motion (metaphase) and then pulled to opposite spindle poles (anaphase). These large and small-scale chromosome movements are driven by kinetochores, multi-protein machines, that link chromosomes to microtubules and generate directional forces. Through automated near-complete tracking of kinetochores at fine spatio-temporal resolution over long timescales, we produce a detailed atlas of kinetochore dynamics throughout metaphase and anaphase in human cells. We develop a hierarchical biophysical model of kinetochore dynamics and fit this model to 4D lattice light sheet experimental data using Bayesian inference. We demonstrate that location in the metaphase plate is the largest factor in the variation in kinetochore dynamics, exceeding the variation between cells, whilst within the spindle there is local spatio-temporal coordination between neighbouring kinetochores of directional switching events, kinetochore-fibre (K-fibre) polymerization/depolymerization state and the segregation of chromosomes. Thus, metaphase oscillations are robust to variation in the mechanical forces throughout the spindle, whilst the spindle environment couples kinetochore dynamics across the plate. Our methods provide a framework for detailed quantification of chromosome dynamics during mitosis in human cells.


2021 ◽  
Author(s):  
Aaron R. Tipton ◽  
Gary J. Gorbsky

The microtubules of the mitotic spindle mediate chromosome alignment to the metaphase plate, then sister chromatid segregation to the spindle poles in anaphase. Previous analyses of spindle microtubule kinetics utilizing fluorescence dissipation after photoactivation described two main populations, a slow and a fast turnover population, and these were ascribed to reflect kinetochore versus non-kinetochore microtubules, respectively. Here, we test this categorization by disrupting kinetochores through depletion of the Ndc80 complex. In the absence of functional kinetochores, microtubule dynamics still exhibit slow and fast turnover populations, though the proportion of each population and the timings of turnover are altered. Importantly, the data obtained following Hec1/Ndc80 depletion suggests other sub-populations, in addition to kinetochore microtubules, contribute to the slow turnover population. Further manipulation of spindle microtubules revealed a complex landscape. For example, while Aurora B kinase functions to destabilize kinetochore bound microtubules it may also stabilize certain slow turnover, non-kinetochore microtubules. Dissection of the dynamics of microtubule populations provides a greater understanding of mitotic spindle kinetics and insight into their roles in facilitating chromosome attachment, movement, and segregation during mitosis.


2021 ◽  
Author(s):  
Aniket Jana ◽  
Haonan Zhang ◽  
Ji Wang ◽  
Rakesh Kapania ◽  
Nir Gov ◽  
...  

During mitosis, cells round up and generate outward forces to create space and orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we recapitulate in vivo adhesion organization and confinement to interrogate mitotic outcomes for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo large 3D displacement while being held by retraction fibers. Increasing the number of parallel fibers increases cellular extremity FACs and retraction fiber-driven stability, leading to reduced 3D cell-body movement, metaphase plate rotations, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by retraction fibers from two perpendicular suspended fibers. We develop a cortex-astral microtubule analytical friction and force model to capture retraction-fiber-driven stability of the metaphase plate rotations. We report that reduced orientational stability results in increased monopolar mitotic defects. In the case of cells attached to two parallel fibers, rounded mitotic cells can get confined between the suspended fibers, allowing estimation of the mitotic forces through measurement of the outward deflection of the fibers. Interestingly, confinement causes rotated mitotic spindles similar to those reported in dense tissues. Overall, we establish dynamics of mitosis in fibrous environments governed by fiber arrangement and architecture-driven differences in interphase cell shapes, adhesion geometries, and varying levels of mechanical confinement.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1322
Author(s):  
Danilo Cilluffo ◽  
Roberta Flavia Chiavetta ◽  
Serena Bivona ◽  
Flavia Contino ◽  
Claudia Coronnello ◽  
...  

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore–microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore–microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial–mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.


2021 ◽  
Vol 10 (2) ◽  
pp. 46
Author(s):  
Sepvian Dewi Kurniawati ◽  
Suryanie Sarudji ◽  
Widjiati Widjiati

This study was aimed to determine the effect of urea in maturation medium on in vitro oocyte maturation rate. The medium used was TCM-199 added with Hepes, NaHCO3, Kanamycin 0.15 IU/mL, PMSG, 0.15 IU/mL hCG, and 10% FBS. Cumulus oocyte complexes (COCs) of cows derived from follicle aspiration were divided into three groups. In control group (P0), the COCs were matured in vitro in a maturation medium without urea addition, meanwhile in the P1 and P2 groups, the medium was added with urea 20 and 40 mg/dL, respectively. Each petri dish contained three drops of maturation medium (300 µl/drops) according to the groups. Microdrops were coated with mineral oil and then incubated in a 5% CO2 incubator, at 39 ˚C with maximum humidity. Aceto-orcein staining was conducted to evaluate the maturation of oocytes based on the achievement of metaphase II phase that is indicated by the presence of metaphase plate and/or first polar body. The result showed that the oocyte maturation rates of P0, P1, and P2 were 51.25, 52.43 (p >0.05), and 46.88 % (p <0.05) respectively. It could be concluded that the presence of urea at 40 mg/dL in maturation medium reduced the percentage of bovine oocyte maturation in vitro.


2021 ◽  
Author(s):  
Maximilian W.G. Schneider ◽  
Bryan A Gibson ◽  
Shotaro Otsuka ◽  
Maximilian F. D. Spicer ◽  
Mina Petrovic ◽  
...  

Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells. Assembly of mitotic chromosomes involves DNA looping by condensin and chromatin compaction by global histone deacetylation. While condensin confers mechanical resistance towards spindle pulling forces, it is not known how histone deacetylation affects material properties and segregation mechanics of mitotic chromosomes. Here, we show how global histone deacetylation at the onset of mitosis induces a chromatin-intrinsic phase transition that endows chromosomes with specific characteristics necessary for their precise movement during cellular division. Deacetylation-mediated compaction of chromatin forms a structure dense in negative charge and allows mitotic chromosomes to resist perforation by microtubules as they are pushed to the metaphase plate. Hyperacetylated mitotic chromosomes lack a defined surface boundary, are frequently perforated by microtubules, and are prone to missegregation. Our study highlights the different contributions of DNA loop formation and chromatin-intrinsic phase separation to genome segregation in dividing cells.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Karamtzioti ◽  
G Tiscornia ◽  
D Garcia ◽  
A Rodriguez ◽  
I Vernos ◽  
...  

Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable


PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009561
Author(s):  
Chin Hong Lee ◽  
Nathaniel P. Hawker ◽  
Jonathan R. Peters ◽  
Thierry G. A. Lonhienne ◽  
Nial R. Gursanscky ◽  
...  

The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1’s primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1.


2021 ◽  
Author(s):  
Brigitte de Saint Phalle ◽  
Rudolf Oldenbourg ◽  
Donna F. Kubai ◽  
Edward D. Salmon ◽  
Susan A. Gerbi

Meiosis in male Sciara is unique with a single centrosome. A monopolar spindle forms in meiosis I, but a bipolar spindle forms in meiosis II. The imprinted paternal chromosomes are eliminated in meiosis I; there is non-disjunction of the X in meiosis II. Despite differences in spindle construction and chromosome behavior, both meiotic divisions are asymmetric, producing a cell and a small bud. Observations of live spermatocytes made with the LC-PolScope, differential interference contrast optics and fluorescence revealed maternal and paternal chromosome sets on the monopolar spindle in meiosis I and formation of an asymmetric monastral bipolar spindle in meiosis II where all chromosomes except the X congress to the metaphase plate. The X remains near the centrosome after meiosis I and stays with it as the spindle forms in meiosis II. Electron microscopy revealed amorphous material between the X and the centrosome. Immunofluorescence with an antibody against the checkpoint protein Mad2 stains the centromeres of the maternal X dyad in late meiosis I and in meiosis II where it fails to congress to the metaphase plate. Mad2 is also present throughout the paternal chromosomes destined for elimination in meiosis I, suggesting a possible role in chromosome imprinting. If Mad2 on the X dyad mediates a spindle checkpoint in meiosis II, it may delay metaphase to facilitate formation of the second half spindle through a non-centrosomal mechanism.


Sign in / Sign up

Export Citation Format

Share Document