scholarly journals The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint.

1996 ◽  
Vol 132 (1) ◽  
pp. 111-123 ◽  
Author(s):  
E Weiss ◽  
M Winey

M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity.

1999 ◽  
Vol 10 (7) ◽  
pp. 2393-2406 ◽  
Author(s):  
Marı́a de la Cruz Muñoz-Centeno ◽  
Susan McBratney ◽  
Antonio Monterrosa ◽  
Breck Byers ◽  
Carl Mann ◽  
...  

The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae ( Winey et al., 1991 ). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.


1996 ◽  
Vol 134 (2) ◽  
pp. 429-441 ◽  
Author(s):  
A Spang ◽  
S Geissler ◽  
K Grein ◽  
E Schiebel

Tub4p is a novel tubulin in Saccharomyces cerevisiae that most closely resembles gamma-tubulin. We report in this manuscript that the essential Tub4p is associated with the inner and outer plaques of the yeast microtubule organizing center, the spindle pole body (SPB). These SPB substructures are involved in the attachment of the nuclear and cytoplasmic microtubules, respectively (Byers, B., and L. Goetsch. 1975. J. Bacteriol. 124:511-523). Study of a temperature sensitive tub4-1 allele revealed that TUB4 has essential functions in microtubule organization. Remarkably, SPB duplication and separation are not impaired in tub4-1 cells incubated at the nonpermissive temperature. However, SPBs from such cells contain less or misdirected nuclear microtubules. Further analysis revealed that tub4-1 cells are able to assemble a short bipolar spindle, suggesting that the defect in microtubule organization occurs after spindle formation. A role of Tub4p in microtubule organization is further suggested by an increase in chromosome loss in tub4-1 cells. In addition, cell cycle arrest and survival of tub4-1 cells is dependent on the mitotic checkpoint control gene BUB2 (Hoyt, M.A., L. Totis, B.T. Roberts. 1991. Cell. 66:507-517), one of the cell's monitors of spindle integrity.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


1980 ◽  
Vol 46 (1) ◽  
pp. 341-352
Author(s):  
R.A. Quinlan ◽  
C.I. Pogson ◽  
K. Gull

Methyl benzimidazol-2-yl-carbamate (MBC), at a concentration of 100 microM, has a pronounced effect on the growth of Saccharomyces cerevisiae, resulting in the accumulation of cells as large doublets. We have determined a specific execution point for the effect of MBC on the yeast cell cycle, and have shown that this execution point is between the cycle events of spindle pole body duplication and spindle pole body separation. An ultrastructural examination of the MBC-treated cells revealed the absence of cytoplasmic and spindle microtubules. MBC treatment also produced an altered spindle pole body morphology, causing the disappearance of the outer component. Nuclear size was also markedly increased in the MBC-induced doublet cells, although the septa were completely absent from these doublet cells. It is proposed that MBC inhibits microtubule polymerization, rather than causing the depolymerization of stable microtubules.


1998 ◽  
Vol 9 (4) ◽  
pp. 775-793 ◽  
Author(s):  
Gislene Pereira ◽  
Michael Knop ◽  
Elmar Schiebel

In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the γ-tubulin complex containing the γ-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.


1986 ◽  
Vol 6 (6) ◽  
pp. 2213-2222 ◽  
Author(s):  
B Futcher ◽  
J Carbon

Plasmids carrying a Saccharomyces cerevisiae centromere have a copy number of one or two, whereas other yeast plasmids have high copy numbers. The number of CEN plasmids per yeast cell was made artificially high by transforming cells simultaneously with several different CEN plasmids carrying different, independently selectable markers. Some host cells carried five different CEN plasmids and an average total of 13 extra copies of CEN3. Several effects were noted. The copy number of each plasmid was unexpectedly high. The plasmids were mutually unstable. Cultures contained many dead cells. The viable host cells grew more slowly than control cells, even in nonselective medium. There was a pause in the cell cycle at or just before mitosis. We conclude that an excess of centromeres is toxic and that the copy number of centromere plasmids is low partly because of selection against cells carrying multiple centromere plasmids. The toxicity may be caused by competition between the centromeres for some factor present in limiting quantities, e.g., centromere-binding proteins, microtubules, or space on the spindle pole body.


2011 ◽  
Vol 193 (6) ◽  
pp. 1033-1048 ◽  
Author(s):  
Daniela Trinca Bertazzi ◽  
Bahtiyar Kurtulmus ◽  
Gislene Pereira

The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2–Bfa1 GAP complex that inhibit the mitotic exit–promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2–Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2–Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB.


1993 ◽  
Vol 122 (4) ◽  
pp. 743-751 ◽  
Author(s):  
M Winey ◽  
MA Hoyt ◽  
C Chan ◽  
L Goetsch ◽  
D Botstein ◽  
...  

The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB.


2000 ◽  
Vol 10 (6) ◽  
pp. 329-332 ◽  
Author(s):  
Shuichan Xu ◽  
Han-Kuei Huang ◽  
Peter Kaiser ◽  
Martin Latterich ◽  
Tony Hunter

Sign in / Sign up

Export Citation Format

Share Document