scholarly journals The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin.

1996 ◽  
Vol 133 (6) ◽  
pp. 1237-1250 ◽  
Author(s):  
K Takei ◽  
O Mundigl ◽  
L Daniell ◽  
P De Camilli

Strong evidence implicates clathrin-coated vesicles and endosome-like vacuoles in the reformation of synaptic vesicles after exocytosis, and it is generally assumed that these vacuoles represent a traffic station downstream from clathrin-coated vesicles. To gain insight into the mechanisms of synaptic vesicle budding from endosome-like intermediates, lysed nerve terminals and nerve terminal membrane subfractions were examined by EM after incubations with GTP gamma S. Numerous clathrin-coated budding intermediates that were positive for AP2 and AP180 immunoreactivity and often collared by a dynamin ring were seen. These were present not only on the plasma membrane (Takei, K., P.S. McPherson, S.L.Schmid, and P. De Camilli. 1995. Nature (Lond.). 374:186-190), but also on internal vacuoles. The lumen of these vacuoles retained extracellular tracers and was therefore functionally segregated from the extracellular medium, although narrow connections between their membranes and the plasmalemma were sometimes visible by serial sectioning. Similar observations were made in intact cultured hippocampal neurons exposed to high K+ stimulation. Coated vesicle buds were generally in the same size range of synaptic vesicles and positive for the synaptic vesicle protein synaptotagmin. Based on these results, we suggest that endosome-like intermediates of nerve terminals originate by bulk uptake of the plasma membrane and that clathrin- and dynamin-mediated budding takes place in parallel from the plasmalemma and from these internal membranes. We propose a synaptic vesicle recycling model that involves a single vesicle budding step mediated by clathrin and dynamin.

1973 ◽  
Vol 57 (2) ◽  
pp. 315-344 ◽  
Author(s):  
J. E. Heuser ◽  
T. S. Reese

When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jason D Vevea ◽  
Grant F Kusick ◽  
Kevin C Courtney ◽  
Erin Chen ◽  
Shigeki Watanabe ◽  
...  

Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. ‘Zap-and-freeze’ electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.


2021 ◽  
Author(s):  
Jason D. Vevea ◽  
Grant F. Kusick ◽  
Erin Chen ◽  
Kevin C. Courtney ◽  
Shigeki Watanabe ◽  
...  

Abstract Synaptotagmin (SYT) 7 has emerged as key regulator of presynaptic function, but its localization and precise function in the synaptic vesicle cycle remain unclear. Here, we used iGluSnFR to optically and directly interrogate glutamate release, at the single bouton level, in SYT7 KO dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired pulse facilitation, and synaptic vesicle replenishment, and found that SYT7 contributes to each of these processes to different degrees. ‘Zap-and-freeze’ electron microscopy revealed that loss of SYT7 impairs the docking of synaptic vesicles after a stimulus and the recovery of depleted synaptic vesicles after a stimulus train. To execute these functions, SYT7 must be targeted to the plasma membrane via γ-secretase-mediated cleavage of the amino terminus, followed by palmitoylation. The complex sorting itinerary of SYT7 endows this Ca2+-sensor with the ability to control crucial forms of synaptic function and plasticity. SYT7 mediated asynchronous release, paired pulse facilitation, and synaptic vesicle replenishment was observed optically at individual hippocampal synapses Localization, trafficking, and stability of SYT7 is dependent on processing by γ-secretase Short term plasticity defects arise in SYT7KOs due to decreased docking of synaptic vesicles after stimulation SYT7 promotes paired-pulse facilitation and asynchronous release via distinct mechanisms


1999 ◽  
Vol 146 (5) ◽  
pp. 993-1004 ◽  
Author(s):  
Lesley J. Page ◽  
Penelope J. Sowerby ◽  
Winnie W.Y. Lui ◽  
Margaret S. Robinson

The AP-1 adaptor complex is associated with the TGN, where it links selected membrane proteins to the clathrin lattice, enabling these proteins to be concentrated in clathrin-coated vesicles. To identify other proteins that participate in the clathrin-coated vesicle cycle at the TGN, we have carried out a yeast two- hybrid library screen using the γ-adaptin subunit of the AP-1 complex as bait. Two novel, ubiquitously expressed proteins were found: p34, which interacts with both γ-adaptin and α-adaptin, and γ-synergin, an alternatively spliced protein with an apparent molecular mass of ∼110–190 kD, which only interacts with γ-adaptin. γ-Synergin is associated with AP-1 both in the cytosol and on TGN membranes, and it is strongly enriched in clathrin-coated vesicles. It binds directly to the ear domain of γ-adaptin and it contains an Eps15 homology (EH) domain, although the EH domain is not part of the γ-adaptin binding site. In cells expressing α-adaptin with the γ-adaptin ear, a construct that goes mainly to the plasma membrane, much of the γ-synergin is also rerouted to the plasma membrane, indicating that it follows AP-1 onto membranes rather than leading it there. The presence of an EH domain suggests that γ-synergin links the AP-1 complex to another protein or proteins.


2003 ◽  
Vol 14 (12) ◽  
pp. 4909-4919 ◽  
Author(s):  
Maria Pennuto ◽  
Dario Bonanomi ◽  
Fabio Benfenati ◽  
Flavia Valtorta

Synaptic vesicle (SV) proteins are synthesized at the level of the cell body and transported down the axon in membrane precursors of SVs. To investigate the mechanisms underlying sorting of proteins to SVs, fluorescent chimeras of vesicle-associated membrane protein (VAMP) 2, its highly homologous isoform VAMP1 and synaptotagmin I (SytI) were expressed in hippocampal neurons in culture. Interestingly, the proteins displayed a diffuse component of distribution along the axon. In addition, VAMP2 was found to travel in vesicles that constitutively fuse with the plasma membrane. Coexpression of VAMP2 with synaptophysin I (SypI), a major resident of SVs, restored the correct sorting of VAMP2 to SVs. The effect of SypI on VAMP2 sorting was dose dependent, being reversed by increasing VAMP2 expression levels, and highly specific, because the sorting of the SV proteins VAMP1 and SytI was not affected by SypI. The cytoplasmic domain of VAMP2 was found to be necessary for both the formation of VAMP2-SypI hetero-dimers and for VAMP2 sorting to SVs. These data support a role for SypI in directing the correct sorting of VAMP2 in neurons and demonstrate that a direct interaction between the two proteins is required for SypI in order to exert its effect.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zohreh Farsi ◽  
Sindhuja Gowrisankaran ◽  
Matija Krunic ◽  
Burkhard Rammner ◽  
Andrew Woehler ◽  
...  

Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1734 ◽  
Author(s):  
Natali L. Chanaday ◽  
Ege T. Kavalali

Synaptic vesicle recycling is essential for sustained and reliable neurotransmission. A key component of synaptic vesicle recycling is the synaptic vesicle biogenesis process that is observed in synapses and that maintains the molecular identity of synaptic vesicles. However, the mechanisms by which synaptic vesicles are retrieved and reconstituted after fusion remain unclear. The complex molecular composition of synaptic vesicles renders their rapid biogenesis a daunting task. Therefore, in this context, kiss-and-run type transient fusion of synaptic vesicles with the plasma membrane without loss of their membrane composition and molecular identity remains a viable hypothesis that can account for the fidelity of the synaptic vesicle cycle. In this article, we discuss the biological implications of this problem as well as its possible molecular solutions.


1994 ◽  
Vol 127 (4) ◽  
pp. 915-934 ◽  
Author(s):  
H Damke ◽  
T Baba ◽  
D E Warnock ◽  
S L Schmid

Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.


1992 ◽  
Vol 118 (6) ◽  
pp. 1379-1388 ◽  
Author(s):  
P R Maycox ◽  
E Link ◽  
A Reetz ◽  
S A Morris ◽  
R Jahn

The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.


2006 ◽  
Vol 174 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Shernaz X. Bamji ◽  
Beatriz Rico ◽  
Nikole Kimes ◽  
Louis F. Reichardt

Neurons of the vertebrate central nervous system have the capacity to modify synapse number, morphology, and efficacy in response to activity. Some of these functions can be attributed to activity-induced synthesis and secretion of the neurotrophin brain-derived neurotrophic factor (BDNF); however, the molecular mechanisms by which BDNF mediates these events are still not well understood. Using time-lapse confocal analysis, we show that BDNF mobilizes synaptic vesicles at existing synapses, resulting in small clusters of synaptic vesicles “splitting” away from synaptic sites. We demonstrate that BDNF's ability to mobilize synaptic vesicle clusters depends on the dissociation of cadherin–β-catenin adhesion complexes that occurs after tyrosine phosphorylation of β-catenin. Artificially maintaining cadherin–β-catenin complexes in the presence of BDNF abolishes the BDNF-mediated enhancement of synaptic vesicle mobility, as well as the longer-term BDNF-mediated increase in synapse number. Together, this data demonstrates that the disruption of cadherin–β-catenin complexes is an important molecular event through which BDNF increases synapse density in cultured hippocampal neurons.


Sign in / Sign up

Export Citation Format

Share Document