scholarly journals Targeting and function in mRNA export of nuclear pore complex protein Nup153.

1996 ◽  
Vol 134 (5) ◽  
pp. 1141-1156 ◽  
Author(s):  
R Bastos ◽  
A Lin ◽  
M Enarson ◽  
B Burke

Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH-terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2-terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.

2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


2012 ◽  
Vol 23 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Eduardo Ródenas ◽  
Cristina González-Aguilera ◽  
Cristina Ayuso ◽  
Peter Askjaer

Nuclear pore complexes consist of several subcomplexes. The NUP107 complex is important for nucleocytoplasmic transport, nuclear envelope assembly, and kinetochore function. However, the underlying molecular mechanisms and the roles of individual complex members remain elusive. We report the first description of a genetic disruption of NUP107 in a metazoan. Caenorhabditis elegans NUP107/npp-5 mutants display temperature-dependent lethality. Surprisingly, NPP-5 is dispensable for incorporation of most nucleoporins into nuclear pores and for nuclear protein import. In contrast, NPP-5 is essential for proper kinetochore localization of NUP133/NPP-15, another NUP107 complex member, whereas recruitment of NUP96/NPP-10C and ELYS/MEL-28 is NPP-5 independent. We found that kinetochore protein NUF2/HIM-10 and Aurora B/AIR-2 kinase are less abundant on mitotic chromatin upon NPP-5 depletion. npp-5 mutants are hypersensitive to anoxia, suggesting that the spindle assembly checkpoint (SAC) is compromised. Indeed, NPP-5 interacts genetically and physically with SAC protein MAD1/MDF-1, whose nuclear envelope accumulation requires NPP-5. Thus our results strengthen the emerging connection between nuclear pore proteins and chromosome segregation.


2004 ◽  
Vol 167 (4) ◽  
pp. 583-590 ◽  
Author(s):  
Bryan Zeitler ◽  
Karsten Weis

Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.


2015 ◽  
Vol 208 (3) ◽  
pp. 283-297 ◽  
Author(s):  
Monika Gaik ◽  
Dirk Flemming ◽  
Alexander von Appen ◽  
Panagiotis Kastritis ◽  
Norbert Mücke ◽  
...  

Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82–Nup159–Nsp1–Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery.


Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Busra A. Akarlar ◽  
Nurhan Ozlu ◽  
...  

AbstractNuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs assemble either into the closed nuclear envelope during interphase or concomitantly with nuclear envelope reformation during anaphase. Both, interphase and post-mitotic NPC biogenesis require local deformation of membrane. Yet, the factors that control proper membrane remodeling for post-mitotic NPC assembly are unknown. Here, we report that the reticulon homology domain-protein REEP4 localizes not only to high-curvature membrane of the cytoplasmic endoplasmic reticulum (ER) but also to the inner nuclear membrane (INM). We show that REEP4 is recruited to the INM by the NPC biogenesis factor ELYS and promotes NPC assembly. REEP4 contributes mainly to anaphase NPC assembly, suggesting that REEP4 has an unexpected role in coordinating nuclear envelope reformation with post-mitotic NPC biogenesis.


1997 ◽  
Vol 110 (8) ◽  
pp. 927-944 ◽  
Author(s):  
G. Zimowska ◽  
J.P. Aris ◽  
M.R. Paddy

Here we report structural, molecular, and biochemical characterizations of Bx34, a Drosophila melanogaster nuclear coiled-coil protein which is localized to extrachromosomal and extranucleolar spaces in the nuclear interior and which is homologous to the mammalian nuclear pore complex protein Tpr. In the nuclear interior, Bx34 is excluded from chromosomes and the nucleolus and generally localizes to regions between these structures and the nuclear periphery. This distribution matches the ‘extrachromosomal channel network’ described previously. In the nuclear periphery, Bx34 localizes on or near nuclear pore complexes. Biochemically, Bx34 isolates exclusively with the nuclear matrix fraction. The Bx34 cDNA sequence predicts a large protein (262 kDa) with two distinct structural domains. The Bx34 N-terminal 70% (180 kDa) is predicted to form an extended region of coiled-coil, while the C-terminal 30% (82 kDa) is predicted to be unstructured and acidic. Bx34 shows moderate sequence identity over its entire length to the mammalian nuclear pore complex protein ‘Tpr’ (28% amino acid identity and 50% similarity). Furthermore, several of the sequence motifs and biochemical similarities between Bx34 and Tpr are sufficiently striking that it is likely that Bx34 and Tpr are functionally related. The Bx34 gene exists in a single copy in region 48C of chromosome 2R. The localization of coiled-coil Bx34 to both the nuclear interior and nuclear pore complexes and its sequence similarity to a known nuclear pore complex protein leads to speculations about a role for Bx34 in nucleo-cytoplasmic transport which we can test using molecular genetic approaches.


1993 ◽  
Vol 123 (6) ◽  
pp. 1333-1344 ◽  
Author(s):  
V C Cordes ◽  
S Reidenbach ◽  
A Köhler ◽  
N Stuurman ◽  
R van Driel ◽  
...  

Nuclear pore complexes (NPCs) are anchoring sites of intranuclear filaments of 3-6 nm diameter that are coaxially arranged on the perimeter of a cylinder and project into the nuclear interior for lengths varying in different kinds of cells. Using a specific monoclonal antibody we have found that a polypeptide of approximately 190 kD on SDS-PAGE, which appears to be identical to the recently described NPC protein "nup 153," is a general constituent of these intranuclear NPC-attached filaments in different types of cells from diverse species, including amphibian oocytes where these filaments are abundant and can be relatively long. We have further observed that during mitosis this filament protein transiently disassembles, resulting in a distinct soluble molecular entity of approximately 12.5 S, and then disperses over most of the cytoplasm. Similarly, the amphibian oocyte protein appears in a soluble form of approximately 16 S during meiotic metaphase and can be immunoprecipitated from egg cytoplasmic supernatants. We conclude that this NPC protein can assemble into a filamentous form at considerable distance from the nuclear envelope and discuss possible functions of these NPC-attached filaments, from a role as guidance structure involved in nucleocytoplasmic transport to a form of excess storage of NPC proteins in oocytes.


2004 ◽  
Vol 167 (4) ◽  
pp. 591-597 ◽  
Author(s):  
Ian C. Berke ◽  
Thomas Boehmer ◽  
Günter Blobel ◽  
Thomas U. Schwartz

Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs) whose complex architecture is generated from a set of only ∼30 proteins, termed nucleoporins. Here, we explore the domain structure of Nup133, a nucleoporin in a conserved NPC subcomplex that is crucial for NPC biogenesis and is believed to form part of the NPC scaffold. We show that human Nup133 contains two domains: a COOH-terminal domain responsible for its interaction with its subcomplex through Nup107; and an NH2-terminal domain whose crystal structure reveals a seven-bladed β-propeller. The surface properties and conservation of the Nup133 β-propeller suggest it may mediate multiple interactions with other proteins. Other β-propellers are predicted in a third of all nucleoporins. These and several other repeat-based motifs appear to be major elements of nucleoporins, indicating a level of structural repetition that may conceptually simplify the assembly and disassembly of this huge protein complex.


2015 ◽  
Vol 208 (6) ◽  
pp. 729-744 ◽  
Author(s):  
Christopher L. Lord ◽  
Benjamin L. Timney ◽  
Michael P. Rout ◽  
Susan R. Wente

The eukaryotic nuclear permeability barrier and selective nucleocytoplasmic transport are maintained by nuclear pore complexes (NPCs), large structures composed of ∼30 proteins (nucleoporins [Nups]). NPC structure and function are disrupted in aged nondividing metazoan cells, although it is unclear whether these changes are a cause or consequence of aging. Using the replicative life span (RLS) of Saccharomyces cerevisiae as a model, we find that specific Nups and transport events regulate longevity independent of changes in NPC permeability. Mutants lacking the GLFG domain of Nup116 displayed decreased RLSs, whereas longevity was increased in nup100-null mutants. We show that Nup116 mediates nuclear import of the karyopherin Kap121, and each protein is required for mitochondrial function. Both Kap121-dependent transport and Nup116 levels decrease in replicatively aged yeast. Overexpression of GSP1, the small GTPase that powers karyopherin-mediated transport, rescued mitochondrial and RLS defects in nup116 mutants and increased longevity in wild-type cells. Together, these studies reveal that specific NPC nuclear transport events directly influence aging.


2004 ◽  
Vol 24 (9) ◽  
pp. 3623-3632 ◽  
Author(s):  
Maria T. Vassileva ◽  
Michael J. Matunis

ABSTRACT Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to other cellular proteins, particularly those that localize and function in the nucleus. Enzymes regulating SUMO modification localize in part to nuclear pore complexes (NPCs), indicating that modification of some proteins may occur as they are translocated between the nucleus and the cytoplasm. Substrates that are regulated by SUMO modification at NPCs, however, have not been previously identified. Among the most abundant cargos transported through NPCs are the heterogeneous nuclear ribonucleoproteins (hnRNPs). HnRNPs are involved in various aspects of mRNA biogenesis, including regulation of pre-mRNA splicing and nuclear export. Here, we demonstrate that two subsets of hnRNPs, the hnRNP C and M proteins, are substrates for SUMO modification. We demonstrate that the hnRNP C proteins are modified by SUMO at a single lysine residue, K237, and that SUMO modification at this site decreases their binding to nucleic acids. We also show that Nup358, a SUMO E3 ligase associated with the cytoplasmic fibrils of NPCs, enhances the SUMO modification of the hnRNP C and M proteins. Based on our findings, we propose that SUMO modification of the hnRNP C and M proteins may occur at NPCs and facilitate the nucleocytoplasmic transport of mRNAs.


Sign in / Sign up

Export Citation Format

Share Document