scholarly journals Dissection of the NUP107 nuclear pore subcomplex reveals a novel interaction with spindle assembly checkpoint protein MAD1 in Caenorhabditis elegans

2012 ◽  
Vol 23 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Eduardo Ródenas ◽  
Cristina González-Aguilera ◽  
Cristina Ayuso ◽  
Peter Askjaer

Nuclear pore complexes consist of several subcomplexes. The NUP107 complex is important for nucleocytoplasmic transport, nuclear envelope assembly, and kinetochore function. However, the underlying molecular mechanisms and the roles of individual complex members remain elusive. We report the first description of a genetic disruption of NUP107 in a metazoan. Caenorhabditis elegans NUP107/npp-5 mutants display temperature-dependent lethality. Surprisingly, NPP-5 is dispensable for incorporation of most nucleoporins into nuclear pores and for nuclear protein import. In contrast, NPP-5 is essential for proper kinetochore localization of NUP133/NPP-15, another NUP107 complex member, whereas recruitment of NUP96/NPP-10C and ELYS/MEL-28 is NPP-5 independent. We found that kinetochore protein NUF2/HIM-10 and Aurora B/AIR-2 kinase are less abundant on mitotic chromatin upon NPP-5 depletion. npp-5 mutants are hypersensitive to anoxia, suggesting that the spindle assembly checkpoint (SAC) is compromised. Indeed, NPP-5 interacts genetically and physically with SAC protein MAD1/MDF-1, whose nuclear envelope accumulation requires NPP-5. Thus our results strengthen the emerging connection between nuclear pore proteins and chromosome segregation.

2003 ◽  
Vol 14 (12) ◽  
pp. 5104-5115 ◽  
Author(s):  
Vincent Galy ◽  
Iain W. Mattaj ◽  
Peter Askjaer

Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of ∼70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.


1997 ◽  
Vol 136 (6) ◽  
pp. 1185-1199 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.


1996 ◽  
Vol 134 (5) ◽  
pp. 1141-1156 ◽  
Author(s):  
R Bastos ◽  
A Lin ◽  
M Enarson ◽  
B Burke

Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH-terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2-terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


2008 ◽  
Vol 19 (3) ◽  
pp. 1230-1240 ◽  
Author(s):  
Ulrike Theisen ◽  
Anne Straube ◽  
Gero Steinberg

Mitosis in animals starts with the disassembly of the nuclear pore complexes and the breakdown of the nuclear envelope. In contrast to many fungi, the corn smut fungus Ustilago maydis also removes the nuclear envelope. Here, we report on the dynamic behavior of the nucleoporins Nup214, Pom152, Nup133, and Nup107 in this “open” fungal mitosis. In prophase, the nuclear pore complexes disassembled and Nup214 and Pom152 dispersed in the cytoplasm and in the endoplasmic reticulum, respectively. Nup107 and Nup133 initially spread throughout the cytoplasm, but in metaphase and early anaphase occurred on the chromosomes. In anaphase, the Nup107-subcomplex redistributed to the edge of the chromosome masses, where the new envelope was reconstituted. Subsequently, Nup214 and Pom152 are recruited to the nuclear pores and protein import starts. Recruitment of nucleoporins and protein import reached a steady state in G2 phase. Formation of the nuclear envelope and assembly of nuclear pores occurred in the absence of microtubules or F-actin, but not if both were disrupted. Thus, the basic principles of nuclear pore complex dynamics seem to be conserved in organisms displaying open mitosis.


1997 ◽  
Vol 61 (2) ◽  
pp. 193-211
Author(s):  
A H Corbett ◽  
P A Silver

Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Birthe Fahrenkrog

Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.


Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Busra A. Akarlar ◽  
Nurhan Ozlu ◽  
...  

AbstractNuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs assemble either into the closed nuclear envelope during interphase or concomitantly with nuclear envelope reformation during anaphase. Both, interphase and post-mitotic NPC biogenesis require local deformation of membrane. Yet, the factors that control proper membrane remodeling for post-mitotic NPC assembly are unknown. Here, we report that the reticulon homology domain-protein REEP4 localizes not only to high-curvature membrane of the cytoplasmic endoplasmic reticulum (ER) but also to the inner nuclear membrane (INM). We show that REEP4 is recruited to the INM by the NPC biogenesis factor ELYS and promotes NPC assembly. REEP4 contributes mainly to anaphase NPC assembly, suggesting that REEP4 has an unexpected role in coordinating nuclear envelope reformation with post-mitotic NPC biogenesis.


2009 ◽  
Vol 8 (12) ◽  
pp. 1814-1827 ◽  
Author(s):  
Laura J. Terry ◽  
Susan R. Wente

ABSTRACT The nuclear envelope is a physical barrier between the nucleus and cytoplasm and, as such, separates the mechanisms of transcription from translation. This compartmentalization of eukaryotic cells allows spatial regulation of gene expression; however, it also necessitates a mechanism for transport between the nucleus and cytoplasm. Macromolecular trafficking of protein and RNA occurs exclusively through nuclear pore complexes (NPCs), specialized channels spanning the nuclear envelope. A novel family of NPC proteins, the FG-nucleoporins (FG-Nups), coordinates and potentially regulates NPC translocation. The extensive repeats of phenylalanine-glycine (FG) in each FG-Nup directly bind to shuttling transport receptors moving through the NPC. In addition, FG-Nups are essential components of the nuclear permeability barrier. In this review, we discuss the structural features, cellular functions, and evolutionary conservation of the FG-Nups.


Sign in / Sign up

Export Citation Format

Share Document