scholarly journals Defective Kinesin Heavy Chain Behavior in Mouse Kinesin Light Chain Mutants

1999 ◽  
Vol 146 (6) ◽  
pp. 1277-1288 ◽  
Author(s):  
Amena Rahman ◽  
Adeela Kamal ◽  
Elizabeth A. Roberts ◽  
Lawrence S.B. Goldstein

Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395–15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and β′-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.

2006 ◽  
Vol 173 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Elizabeth E. Glater ◽  
Laura J. Megeath ◽  
R. Steven Stowers ◽  
Thomas L. Schwarz

Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton–KHC complexes, and mitochondria are present in klc −/− photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH2 terminus–splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain–independent, anterograde transport of mitochondria.


Biochemistry ◽  
1998 ◽  
Vol 37 (47) ◽  
pp. 16663-16670 ◽  
Author(s):  
Russell J. Diefenbach ◽  
Joel P. Mackay ◽  
Patricia J. Armati ◽  
Anthony L. Cunningham

2009 ◽  
Vol 65 ◽  
pp. S254
Author(s):  
Haruko Kumanogoh ◽  
Mitsuru Ohtsuka ◽  
Tomoko Hara ◽  
Yoshiko Urbanczyk ◽  
Keizo Takao ◽  
...  

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Srikanth Perike ◽  
Frederick Damen ◽  
Andrielle Capote ◽  
Katherina M Alsina ◽  
...  

Introduction: Atrial fibrillation (AF), is the most common sustained arrhythmia, with an estimated prevalence in the U.S. of 2.7 million to 6.1 million and is predictive to increase to 12.1 million in 2030. AF increases the chances of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. Objective: The overexpression of PPP1R12C, causes hypophosphorylation of atrial myosin light chain 2 (MLC2a), decreasing atrial contractility. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluated the role of PP1c-PPP1R12C interaction in MLC2a de-phosphorylation we used Western blots, coimmunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A) PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The Overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, that cause a reduction in atrial contractility and increases AF inducibility. All these discoveries advocate that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


2000 ◽  
Vol 11 (4) ◽  
pp. 1329-1343 ◽  
Author(s):  
Robert P. Brendza ◽  
Kathy B. Sheehan ◽  
F.R. Turner ◽  
William M. Saxton

Null mutations in the Drosophila Kinesin heavy chain gene (Khc), which are lethal during the second larval instar, have shown that conventional kinesin is critical for fast axonal transport in neurons, but its functions elsewhere are uncertain. To test other tissues, single imaginal cells in young larvae were rendered null for Khc by mitotic recombination. Surprisingly, the null cells produced large clones of adult tissue. The rates of cell proliferation were not reduced, indicating that conventional kinesin is not essential for cell growth or division. This suggests that in undifferentiated cells vesicle transport from the Golgi to either the endoplasmic reticulum or the plasma membrane can proceed at normal rates without conventional kinesin. In adult eye clones produced by null founder cells, there were some defects in differentiation that caused mild ultrastructural changes, but they were not consistent with serious problems in the positioning or transport of endoplasmic reticulum, mitochondria, or vesicles. In contrast, defective cuticle deposition by highly elongated Khc null bristle shafts suggests that conventional kinesin is critical for proper secretory vesicle transport in some cell types, particularly ones that must build and maintain long cytoplasmic extensions. The ubiquity and evolutionary conservation of kinesin heavy chain argue for functions in all cells. We suggest interphase organelle movements away from the cell center are driven by multilayered transport mechanisms; that is, individual organelles can use kinesin-related proteins and myosins, as well as conventional kinesin, to move toward the cell periphery. In this case, other motors can compensate for the loss of conventional kinesin except in cells that have extremely long transport tracks.


Sign in / Sign up

Export Citation Format

Share Document