scholarly journals Botulinum Neurotoxin a Blocks Synaptic Vesicle Exocytosis but Not Endocytosis at the Nerve Terminal

1999 ◽  
Vol 147 (6) ◽  
pp. 1249-1260 ◽  
Author(s):  
Elaine A. Neale ◽  
Linda M. Bowers ◽  
Min Jia ◽  
Karen E. Bateman ◽  
Lura C. Williamson

The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K+-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K+ depolarization, in the presence of Ca2+, triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A–blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca2+ is required for synaptic vesicle membrane retrieval.

2006 ◽  
Vol 176 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Anton Maximov ◽  
Ok-Ho Shin ◽  
Xinran Liu ◽  
Thomas C. Südhof

Central synapses exhibit spontaneous neurotransmitter release that is selectively regulated by cAMP-dependent protein kinase A (PKA). We now show that synaptic vesicles contain synaptotagmin-12, a synaptotagmin isoform that differs from classical synaptotagmins in that it does not bind Ca2+. In synaptic vesicles, synaptotagmin-12 forms a complex with synaptotagmin-1 that prevents synaptotagmin-1 from interacting with SNARE complexes. We demonstrate that synaptotagmin-12 is phosphorylated by cAMP-dependent PKA on serine97, and show that expression of synaptotagmin-12 in neurons increases spontaneous neurotransmitter release by approximately threefold, but has no effect on evoked release. Replacing serine97 by alanine abolishes synaptotagmin-12 phosphorylation and blocks its effect on spontaneous release. Our data suggest that spontaneous synaptic-vesicle exocytosis is selectively modulated by a Ca2+-independent synaptotagmin isoform, synaptotagmin-12, which is controlled by cAMP-dependent phosphorylation.


1999 ◽  
Vol 144 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Stanislav Zakharenko ◽  
Sunghoe Chang ◽  
Michael O'Donoghue ◽  
Sergey V. Popov

In mature neurons, synaptic vesicles continuously recycle within the presynaptic nerve terminal. In developing axons which are free of contact with a postsynaptic target, constitutive membrane recycling is not localized to the nerve terminal; instead, plasma membrane components undergo cycles of exoendocytosis throughout the whole axonal surface (Matteoli et al., 1992; Kraszewski et al., 1995). Moreover, in growing Xenopus spinal cord neurons in culture, acetylcholine (ACh) is spontaneously secreted in the quantal fashion along the axonal shaft (Evers et al., 1989; Antonov et al., 1998). Here we demonstrate that in Xenopus neurons ACh secretion is mediated by vesicles which recycle locally within the axon. Similar to neurotransmitter release at the presynaptic nerve terminal, ACh secretion along the axon could be elicited by the action potential or by hypertonic solutions. We found that the parameters of neurotransmitter secretion at the nerve terminal and at the middle axon were strikingly similar. These results lead us to conclude that, as in the case of the presynaptic nerve terminal, synaptic vesicles involved in neurotransmitter release along the axon contain a complement of proteins for vesicle docking and Ca2+-dependent fusion. Taken together, our results support the idea that, in developing axons, the rudimentary machinery for quantal neurotransmitter secretion is distributed throughout the whole axonal surface. Maturation of this machinery in the process of synaptic development would improve the fidelity of synaptic transmission during high-frequency stimulation of the presynaptic cell.


2002 ◽  
Vol 88 (6) ◽  
pp. 3243-3258 ◽  
Author(s):  
You-Fen Xu ◽  
Dawn Autio ◽  
Mary B. Rheuben ◽  
William D. Atchison

Chronic treatment of rodents with 2,4-dithiobiuret (DTB) induces a neuromuscular syndrome of flaccid muscle weakness that mimics signs seen in several human neuromuscular disorders such as congenital myasthenic syndromes, botulism, and neuroaxonal dystrophy. DTB-induced muscle weakness results from a reduction of acetylcholine (ACh) release by mechanisms that are not yet clear. The objective of this study was to determine if altered release of ACh during DTB-induced muscle weakness was due to impairments of synaptic vesicle exocytosis, endocytosis, or internal vesicular processing. We examined motor nerve terminals in the triangularis sterni muscles of DTB-treated mice at the onset of muscle weakness. Uptake of FM1-43, a fluorescent marker for endocytosis, was reduced to approximately 60% of normal after either high-frequency nerve stimulation or K+depolarization. Terminals ranged from those with nearly normal fluorescence (“bright terminals”) to terminals that were poorly labeled (“dim terminals”). Ultrastructurally, the number of synaptic vesicles that were labeled with horseradish peroxidase (HRP) was also reduced by DTB to approximately 60%; labeling among terminals was similarly variable. A subset of DTB-treated terminals having abnormal tubulovesicular profiles in their centers did not respond to stimulation with increased uptake of HRP and may correspond to dim terminals. Two findings suggest that posttetanic “slow endocytosis” remained qualitatively normal: the rate of this type of endocytosis as measured with FM1-43 did not differ from normal, and HRP was observed in organelles associated with this pathway- coated vesicles, cisternae, as well as synaptic vesicles but not in the tubulovesicular profiles. In DTB-treated bright terminals, end-plate potential (EPP) amplitudes were decreased, and synaptic depression in response to 15-Hz stimulation was increased compared with those of untreated mice; in dim terminals, EPPs were not observed during block withd-tubocurarine. Nerve-stimulation-induced unloading of FM1-43 was slower and less complete than normal in bright terminals, did not occur in dim terminals, and was not enhanced by α-latrotoxin. Collectively, these results indicate that the size of the recycling vesicle pool is reduced in nerve terminals during DTB-induced muscle weakness. The mechanisms by which this reduction occurs are not certain, but accumulated evidence suggests that they may include defects in either or both exocytosis and internal vesicular processing.


2016 ◽  
Vol 113 (29) ◽  
pp. 8314-8319 ◽  
Author(s):  
Tae-Sun Lee ◽  
Joo-Young Lee ◽  
Jae Won Kyung ◽  
Yoosoo Yang ◽  
Seung Ju Park ◽  
...  

Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6. Synaptotagmin 1 (Syt1), a Ca2+ sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7. Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6. In addition, 5-IP7–dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca2+ levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca2+. These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.


1981 ◽  
Vol 88 (3) ◽  
pp. 564-580 ◽  
Author(s):  
J E Heuser ◽  
T S Reese

The sequence of structural changes that occur during synaptic vesicle exocytosis was studied by quick-freezing muscles at different intervals after stimulating their nerves, in the presence of 4-aminopyridine to increase the number of transmitter quanta released by each stimulus. Vesicle openings began to appear at the active zones of the intramuscular nerves within 3-4 ms after a single stimulus. The concentration of these openings peaked at 5-6 ms, and then declined to zero 50-100 ms late. At the later times, vesicle openings tended to be larger. Left behind at the active zones, after the vesicle openings disappeared, were clusters of large intramembrane particles. The larger particles in these clusters were the same size as intramembrane particles in undischarged vesicles, and were slightly larger than the particles which form the rows delineating active zones. Because previous tracer work had shown that new vesicles do not pinch off from the plasma membrane at these early times, we concluded that the particle clusters originate from membranes of discharged vesicles which collapse into the plasmalemma after exocytosis. The rate of vesicle collapse appeared to be variable because different stages occurred simultaneously at most times after stimulation; this asynchrony was taken to indicate that the collapse of each exocytotic vesicle is slowed by previous nearby collapses. The ultimate fate of synaptic vesicle membrane after collapse appeared to be coalescence with the plasma membrane, as the clusters of particles gradually dispersed into surrounding areas during the first second after a stimulus. The membrane retrieval and recycling that reverse this exocytotic sequence have a slower onset, as has been described in previous reports.


2001 ◽  
Vol 281 (5) ◽  
pp. H2124-H2132 ◽  
Author(s):  
Judy L. Morris ◽  
Phillip Jobling ◽  
Ian L. Gibbins

The role of the soluble NSF attachment protein receptor (SNARE) protein complex in release of multiple cotransmitters from autonomic vasodilator neurons was examined in isolated segments of guinea pig uterine arteries treated with botulinum neurotoxin A (BoNTA; 50 nM). Western blotting of protein extracts from uterine arteries demonstrated partial cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25) to a NH2-terminal fragment of ∼24 kDa by BoNTA. BoNTA reduced the amplitude (by 70–80%) of isometric contractions of arteries in response to repeated electrical stimulation of sympathetic axons at 1 or 10 Hz. The amplitude of neurogenic relaxations mediated by neuronal nitric oxide (NO) was not affected by BoNTA, whereas the duration of peptide-mediated neurogenic relaxations to stimulation at 10 Hz was reduced (67% reduction in integrated responses). In contrast, presynaptic cholinergic inhibition of neurogenic relaxations was abolished by BoNTA. These results demonstrate that the SNARE complex has differential involvement in release of cotransmitters from the same autonomic neurons: NO release is not dependant on synaptic vesicle exocytosis, acetylcholine release from small vesicles is highly dependant on the SNARE complex, and neuropeptide release from large vesicles involves SNARE proteins that may interact differently with regulatory factors such as calcium.


1998 ◽  
Vol 12 (7) ◽  
pp. 1060-1070 ◽  
Author(s):  
Xiaohang Huang ◽  
Michael B. Wheeler ◽  
You-hou Kang ◽  
Laura Sheu ◽  
Gergely L. Lukacs ◽  
...  

Abstract We and others have previously shown that insulin-secreting cells of the pancreas express high levels of SNAP-25 (synaptosomal-associated protein of 25 kDa), a 206-amino acid t-SNARE (target soluble N-ethylmaleimide-sensitive factor attachment protein receptors) implicated in synaptic vesicle exocytosis. In the present study, we show that SNAP-25 is required for insulin secretion by transient transfection of Botulinum Neurotoxin A (BoNT/A) into insulin-secreting HIT-T15 cells. Transient expression of BoNT/A cleaved the endogenous as well as overexpressed SNAP-25 proteins and caused significant reductions in K+ and glucose-evoked secretion of insulin. To determine whether the inhibition of release was due to the depletion of functional SNAP-25 or the accumulation of proteolytic by-products, we transfected cells with SNAP-25 proteins from which the C-terminal nine amino acids had been deleted to mimic the effects of the toxin. This modified SNAP-25 (amino acids 1–197) remained bound to the plasma membrane but was as effective as the toxin at inhibiting insulin secretion. Microfluorimetry revealed that the inhibition of secretion was due neither to changes in basal cytosolic Ca2+ levels nor in Ca2+ influx evoked by K+-mediated plasma membrane depolarization. Electron microscopy revealed that cells transfected with either BoNT/A or truncated SNAP-25 contained significantly higher numbers of insulin granules, many of which clustered close to the plasma membrane. Together, these results demonstrate that functional SNAP-25 proteins are required for insulin secretion and suggest that the inhibitory action of BoNT/A toxin on insulin secretion is in part caused by the production of the plasma membrane-bound cleavage product, which itself interferes with insulin granule docking and fusion.


2021 ◽  
Author(s):  
Hao Tongrui ◽  
Feng Nan ◽  
Gong Fan ◽  
Liu Jiaquan ◽  
Lu Ma ◽  
...  

Neurotransmitter release is mediated by the synaptic vesicle exocytosis. Important proteins in this process have been identified including the molecular machine Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, and other regulators. Complexin (Cpx) is one of the vital regulators in this process. The functions of Cpx are proposed to maintain a proper primed vesicle pool by preventing its premature depletion, which facilitates the vesicle fusion in the presence of Ca2+. However, the molecular mechanism remains unclear. Using dual-trap optical tweezers, we detected the interaction of complexin-1 (CpxI) with SNARE. We found that the CpxI stabilizes partially folded SNARE complexes by competing with C-terminal of Vamp protein and interacting with the C-terminal of t-SNARE complex.


2010 ◽  
Vol 38 (1) ◽  
pp. 213-216 ◽  
Author(s):  
Sascha Martens

Neurotransmitter release is mediated by the fusion of synaptic vesicles with the presynaptic plasma membrane. Fusion is triggered by a rise in the intracellular calcium concentration and is dependent on the neuronal SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complex. A plethora of molecules such as members of the MUNC13, MUNC18, complexin and synaptotagmin families act along with the SNARE complex to enable calcium-regulated synaptic vesicle exocytosis. The synaptotagmins are localized to synaptic vesicles by an N-terminal transmembrane domain and contain two cytoplasmic C2 domains. Members of the synaptotagmin family are thought to translate the rise in intracellular calcium concentration into synaptic vesicle fusion. The C2 domains of synaptotagmin-1 bind membranes in a calcium-dependent manner and in response induce a high degree of membrane curvature, which is required for its ability to trigger membrane fusion in vitro and in vivo. Furthermore, members of the soluble DOC2 (double-C2 domain) protein family have similar properties. Taken together, these results suggest that C2 domain proteins such as the synaptotagmins and DOC2s promote membrane fusion by the induction of membrane curvature in the vicinity of the SNARE complex. Given the widespread expression of C2 domain proteins in secretory cells, it is proposed that promotion of SNARE-dependent membrane fusion by the induction of membrane curvature is a widespread phenomenon.


Acta Naturae ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 105-113
Author(s):  
A. L. Zefirov ◽  
R. D. Mukhametzyanov ◽  
A. V. Zakharov ◽  
K. A. Mukhutdinova ◽  
U. O. Odnoshivkina ◽  
...  

Intracellular protons play a special role in the regulation of presynaptic processes, since the functioning of synaptic vesicles and endosomes depends on their acidification by the H+-pump. Furthermore, transient acidification of the intraterminal space occurs during synaptic activity. Using microelectrode recording of postsynaptic responses (an indicator of neurotransmitter release) and exo-endocytic marker FM1-43, we studied the effects of intracellular acidification with propionate on the presynaptic events underlying neurotransmitter release. Cytoplasmic acidification led to a marked decrease in neurotransmitter release during the first minute of a 20-Hz stimulation in the neuromuscular junctions of mouse diaphragm and frog cutaneous pectoris muscle. This was accompanied by a reduction in the FM1-43 loss during synaptic vesicle exocytosis in response to the stimulation. Estimation of the endocytic uptake of FM1-43 showed no disruption in synaptic vesicle endocytosis. Acidification completely prevented the action of the cell-membrane permeable compound 24-hydroxycholesterol, which can enhance synaptic vesicle mobilization. Thus, the obtained results suggest that an increase in [H+]in negatively regulates neurotransmission due to the suppression of synaptic vesicle delivery to the sites of exocytosis at high activity. This mechanism can be a part of the negative feedback loop in regulating neurotransmitter release.


Sign in / Sign up

Export Citation Format

Share Document