scholarly journals Nascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts

2001 ◽  
Vol 153 (4) ◽  
pp. 881-888 ◽  
Author(s):  
Karen A. Beningo ◽  
Micah Dembo ◽  
Irina Kaverina ◽  
J. Victor Small ◽  
Yu-li Wang

Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overall distribution of focal adhesions only partially resembles the distribution of traction stress. In addition, detailed analysis reveals that the faint, small adhesions near the leading edge transmit strong propulsive tractions, whereas large, bright, mature focal adhesions exert weaker forces. This inverse relationship is unique to the leading edge of motile cells, and is not observed in the trailing edge or in stationary cells. Furthermore, time-lapse analysis indicates that traction forces decrease soon after the appearance of focal adhesions, whereas the size and zyxin concentration increase. As focal adhesions mature, changes in structure, protein content, or phosphorylation may cause the focal adhesion to change its function from the transmission of strong propulsive forces, to a passive anchorage device for maintaining a spread cell morphology.

2007 ◽  
Vol 293 (1) ◽  
pp. H193-H203 ◽  
Author(s):  
C. Avraamides ◽  
M. E. Bromberg ◽  
J. P. Gaughan ◽  
S. M. Thomas ◽  
A. Y. Tsygankov ◽  
...  

Endothelial cell migration is critical for proper blood vessel development. Signals from growth factors and matrix proteins are integrated through focal adhesion proteins to alter cell migration. Hydrogen peroxide-inducible clone 5 (Hic-5), a paxillin family member, is enriched in the focal adhesions in bovine pulmonary artery endothelial (BPAE) cells, which migrate to lysophosphatidic acid (LPA) on denatured collagen. In this study, we investigate the role of Hic-5 in LPA-stimulated endothelial cell migration. LPA recruits Hic-5 to the focal adhesions and to the pseudopodia in BPAE cells plated on collagen, suggesting that recruitment of Hic-5 to focal adhesions is associated with endothelial cell migration. Knockdown of endogenous Hic-5 significantly decreases migration toward LPA, confirming involvement of Hic-5 in migration. To address the role of Hic-5 in endothelial cell migration, we exogenously expressed wild-type (WT) Hic-5 and green fluorescent protein Hic-5 C369A/C372A (LIM3 mutant) constructs in BPAE cells. WT Hic-5 expression increases chemotaxis of BPAE cells to LPA, whereas migration toward LPA of the green fluorescent protein Hic-5 C369A/C372A-expressing cells is similar to that shown in vector control cells. Additionally, ERK phosphorylation is enhanced in the presence of LPA in WT Hic-5 cells. A pharmacological inhibitor of MEK activity inhibits LPA-stimulated WT Hic-5 cell migration and ERK phosphorylation, suggesting Hic-5 enhances migration via MEK activation of ERK. Together, these studies indicate that Hic-5, a focal adhesion protein in endothelial cells, is recruited to the pseudopodia in the presence of LPA and enhances migration.


2002 ◽  
Vol 13 (9) ◽  
pp. 3203-3217 ◽  
Author(s):  
Karen A. Pinco ◽  
Wei He ◽  
Joy T. Yang

α4β1 integrin plays an important role in cell migration. We show that when ectopically expressed in Chinese hamster ovary cells, α4β1 is sufficient and required for promoting protrusion of broad lamellipodia in response to scratch-wounding, whereas α5β1 does not have this effect. By time-lapse microscopy of cells expressing an α4/green fluorescent protein fusion protein, we show that α4β1 forms transient puncta at the leading edge of cells that begin to protrude lamellipodia in response to scratch-wounding. The cells expressing a mutant α4/green fluorescent protein that binds paxillin at a reduced level had a faster response to scratch-wounding, forming α4-positive puncta and protruding lamellipodia much earlier. While enhancing lamellipodia protrusion, this mutation reduces random motility of the cells in Transwell assays, indicating that lamellipodia protrusion and random motility are distinct types of motile activities that are differentially regulated by interactions between α4β1 and paxillin. Finally, we show that, at the leading edge, α4-positive puncta and paxillin-positive focal complexes/adhesions do not colocalize, but α4β1 and paxillin colocalize partially in ruffles. These findings provide evidence for a specific role of α4β1 in lamellipodia protrusion that is distinct from the motility-promoting functions of α5β1 and other integrins that mediate cell adhesion and signaling events through focal complexes and focal adhesions.


2000 ◽  
Vol 348 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Madeleine TOUTANT ◽  
Jeanne-Marie STUDLER ◽  
Ferran BURGAYA ◽  
Alicia COSTA ◽  
Pascal EZAN ◽  
...  

In brain, focal adhesion kinase (FAK) is regulated by neurotransmitters and has a higher molecular mass than in other tissues, due to alternative splicing. Two exons code for additional peptides of six and seven residues (‘boxes’ 6 and 7), located on either side of Tyr397, which increase its autophosphorylation. Using in situ hybridization and a monoclonal antibody (Mab77) which does not recognize FAK containing box 7, we show that, although mRNAs coding for boxes 6 and 7 have different patterns of expression in brain, FAK+6,7 is the main isoform in forebrain neurons. The various FAK isoforms fused to green fluorescent protein were all targeted to focal adhesions in non-neuronal cells. Phosphorylation-state-specific antibodies were used to study in detail the phosphorylation of Tyr397, a critical residue for the activation and function of FAK. The presence of boxes 6 and 7 increased autophosphorylation of Tyr397 independently and additively, whereas they had a weak effect on FAK kinase activity towards poly(Glu,Tyr). Src-family kinases were also able to phosphorylate Tyr397 in cells, but this phosphorylation was decreased in the presence of box 6 or 7, and abolished in the presence of both. Thus the additional exons characteristic of neuronal isoforms of FAK do not alter its targeting, but change dramatically the phosphorylation of Tyr397. They increase its autophosphorylation in vitro and in transfected COS-7 cells, whereas they prevent its phosphorylation when co-transfected with Src-family kinases.


2009 ◽  
Vol 29 (6) ◽  
pp. 1506-1514 ◽  
Author(s):  
Cuc T. T. Bach ◽  
Sarah Creed ◽  
Jessie Zhong ◽  
Maha Mahmassani ◽  
Galina Schevzov ◽  
...  

ABSTRACT The balance of transition between distinct adhesion types contributes to the regulation of mesenchymal cell migration, and the characteristic association of adhesions with actin filaments led us to question the role of actin filament-associating proteins in the transition between adhesive states. Tropomyosin isoform association with actin filaments imparts distinct filament structures, and we have thus investigated the role for tropomyosins in determining the formation of distinct adhesion structures. Using combinations of overexpression, knockdown, and knockout approaches, we establish that Tm5NM1 preferentially stabilizes focal adhesions and drives the transition to fibrillar adhesions via stabilization of actin filaments. Moreover, our data suggest that the expression of Tm5NM1 is a critical determinant of paxillin phosphorylation, a signaling event that is necessary for focal adhesion disassembly. Thus, we propose that Tm5NM1 can regulate the feedback loop between focal adhesion disassembly and focal complex formation at the leading edge that is required for productive and directed cell movement.


1998 ◽  
Vol 111 (12) ◽  
pp. 1649-1658 ◽  
Author(s):  
C. Ballestrem ◽  
B. Wehrle-Haller ◽  
B.A. Imhof

The actin cytoskeleton maintains the cellular architecture and mediates cell movements. To explore actin cytoskeletal dynamics, the enhanced green fluorescent protein (EGFP) was fused to human β-actin. The fusion protein was incorporated into actin fibers which became depolymerized upon cytochalasin B treatment. This functional EGFP-actin construct enabled observation of the actin cytoskeleton in living cells by time lapse fluorescence microscopy. Stable expression of the construct was obtained in mammalian cell lines of different tissue origins. In stationary cells, actin rich, ring-like structured ‘actin clouds’ were observed in addition to stress fibers. These ruffle-like structures were found to be involved in the reorganization of the actin cytoskeleton. In migratory cells, EGFP-actin was found in the advancing lamellipodium. Immobile actin spots developed in the lamellipodium and thin actin fibers formed parallel to the leading edge. Thus EGFP-actin expressed in living cells unveiled structures involved in the dynamics of the actin cytoskeleton.


2004 ◽  
Vol 164 (5) ◽  
pp. 759-768 ◽  
Author(s):  
Concepción Gómez-Moutón ◽  
Rosa Ana Lacalle ◽  
Emilia Mira ◽  
Sonia Jiménez-Baranda ◽  
Domingo F. Barber ◽  
...  

Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol–anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide–differentiated HL60 cells in a pertussis toxin–sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase γ in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge.


2005 ◽  
Vol 16 (2) ◽  
pp. 918-926 ◽  
Author(s):  
Tetsuya Horio ◽  
Berl R. Oakley

The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-α-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew ≈5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10× reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.


2000 ◽  
Vol 113 (24) ◽  
pp. 4421-4426 ◽  
Author(s):  
M. Kaksonen ◽  
H.B. Peng ◽  
H. Rauvala

We have used fluorescent protein tagging to study the localization and dynamics of the actin-binding protein cortactin in living NIH 3T3 fibroblast cells. Cortactin was localized to active lamellipodia and to small cytoplasmic spots. Time-lapse imaging revealed that these cortactin labeled structures were very dynamic. In the lamellipodia, cortactin labeled structures formed at the leading edge and then moved toward the cell center. Experiments with green fluorescent protein (GFP)-tagged actin showed that cortactin movement was coincident with the actin retrograde flow in the lamellipodia. Cytoplasmic cortactin spots also contained F-actin and were propelled by actin polymerization. Arp3, a component of the arp2/3 complex which is a key regulator of actin polymerization, co-localized with cortactin. Cytoplasmic cortactin-labeled spots were found to be associated with endosomal vesicles. Association was asymmetric and approximately half of the endosomes were associated with cortactin spots. Time-lapse imaging suggested that these cortactin and F-actin-containing spots propelled endosomes. Actin polymerization based propulsion may be a common mechanism for endomembrane trafficking in the same manner as used in the plasma membrane protrusions. As cortactin is known to interact with membrane-associated signaling proteins it could have a role in linking signaling complexes with dynamic actin on endosomes and in lamellipodia.


1998 ◽  
Vol 143 (3) ◽  
pp. 687-694 ◽  
Author(s):  
Aaron F. Straight ◽  
John W. Sedat ◽  
Andrew W. Murray

The mitotic spindle is a complex and dynamic structure. Genetic analysis in budding yeast has identified two sets of kinesin-like motors, Cin8p and Kip1p, and Kar3p and Kip3p, that have overlapping functions in mitosis. We have studied the role of three of these motors by video microscopy of motor mutants whose microtubules and centromeres were marked with green fluorescent protein. Despite their functional overlap, each motor mutant has a specific defect in mitosis: cin8Δ mutants lack the rapid phase of anaphase B, kip1Δ mutants show defects in the slow phase of anaphase B, and kip3Δ mutants prolong the duration of anaphase to the point at which the spindle becomes longer than the cell. The kip3Δ and kip1Δ mutants affect the duration of anaphase, but cin8Δ does not.


2021 ◽  
pp. mbc.E20-05-0301
Author(s):  
Hailing Zong ◽  
Mark Hazelbaker ◽  
Christina Moe ◽  
Stephanie C. Ems-McClung ◽  
Ke Hu ◽  
...  

The asymmetric distribution of microtubule (MT) dynamics in migrating cells is important for cell polarization, yet the underlying regulatory mechanisms remain underexplored. Here, we addressed this question by studying the role of the MT depolymerase, MCAK, in the highly persistent migration of RPE-1 cells. MCAK knockdown leads to slowed migration and poor directional movement. Fixed and live cell imaging revealed that MCAK knockdown results in excessive membrane ruffling as well as defects in cell polarization and the maintenance of a major protrusive front. Additionally, loss of MCAK increases the lifetime of focal adhesions by decreasing their disassembly rate. These functions correlate with a spatial distribution of MCAK activity, wherein activity is higher in the trailing edge of cells compared to the leading edge. Overexpression of Rac1 has a dominant effect over MCAK activity, placing it downstream or in a parallel pathway to MCAK function in migration. Together, our data support a model in which the polarized distribution of MCAK activity and subsequent differential regulation of MT dynamics contribute to cell polarity, centrosome positioning and focal adhesion dynamics that all help facilitate robust directional migration. [Media: see text] [Media: see text]


Sign in / Sign up

Export Citation Format

Share Document