traction stress
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sultan Ahmed ◽  
Robert T Johnson ◽  
Reesha Solanki ◽  
Teclino Afewerki ◽  
Finn Wostear ◽  
...  

Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aortic wall and normally exist in a quiescent, contractile phenotype where actomyosin-derived contractile forces maintain vascular tone. However, VSMCs are not terminally differentiated and can dedifferentiate into a proliferative, synthetic phenotype. Actomyosin force generation is essential for the function of both phenotypes. Whilst much is already known about the mechanisms of VSMC actomyosin force generation, existing assays are either low throughput and time consuming, or qualitative and inconsistent. In this study, we use polyacrylamide hydrogels, tuned to mimic the physiological stiffness of the aortic wall, in a VSMC contractility assay. Isolated VSMC area decreases following stimulation with the contractile agonists angiotensin II or carbachol. Importantly, the angiotensin II induced reduction in cell area correlated with increased traction stress generation. Inhibition of actomyosin activity using blebbistatin or Y 27632 prevented angiotensin II mediated changes in VSMC morphology, suggesting that changes in VSMC morphology and actomyosin activity are core components of the contractile response. Furthermore, we show that microtubule stability is an essential regulator of isolated VSMC contractility. Treatment with either colchicine or paclitaxel uncoupled the morphological and/or traction stress responses of angiotensin II stimulated VSMCs. Our findings support the tensegrity model and we demonstrate that microtubules act to balance the actomyosin-derived traction stress generation and regulate the morphological responses of VSMCs.


Author(s):  
Ai Kia Yip ◽  
Songjing Zhang ◽  
Lor Huai Chong ◽  
Elsie Cheruba ◽  
Jessie Yong Xing Woon ◽  
...  

Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast’s ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiangquan Wu ◽  
Chunjie Xu ◽  
Zhongming Zhang ◽  
Zhongmin Jin

Purpose This study aims to accurately simulate the tilting separation process of mask projection stereolithography (MPSL) and verify the tilting theory. Design/methodology/approach The finite element separation models of MPSL 3D printing process were established. The established models simulated both tilting and pulling-up separation process by changing the constraints and boundary conditions. The bilinear cohesive curves were used to define the separation interface. The stress distribution of the cured part and FEP film at different times during the whole separation process was extracted. Different orientations of pulling-up and tilting were also compared for stress distribution. The stress change was analyzed for the center and edge points of the upper surface of cured part. Findings The results showed that the stress increased with the separation speed, and the stress at the edge position of exposure area was greater than the internal position. The tilting traction stress distribution was affected by the exposure area function and the velocity distribution. Alternation of the exposure area function changed the cohesive stiffness. The non-coincidence of the calculated traction stress with the input bilinear cohesive curve reflected the influence of the material properties and the separation methods. The high-speed side of tilting had fast separation and high traction stress. Originality/value This study proposes a technical method for simulation tilting separation and verified the tilting theory. The cohesive zone model was proved applicable to the tilting traction stress calculation.


2020 ◽  
Vol 8 (9) ◽  
pp. 232596712094772
Author(s):  
Fumiya Kaneko ◽  
Mutsuaki Edama ◽  
Masahiro Ikezu ◽  
Kanta Matsuzawa ◽  
Ryo Hirabayashi ◽  
...  

Background: Two types of stress, bending stress and traction stress, have been reported to be involved in the mechanism of Jones fracture. However, little is known about the risk factors for traction stress. Purpose: To classify the attachment position of the peroneus brevis muscle (PB), peroneus tertius (PT), lateral band of the plantar aponeurosis (LB), and the long plantar ligament (LPL), focusing on the zone where a Jones fracture occurs (zone 2), and to compare the footprint area of each tissue type. Study Design: Descriptive laboratory study. Methods: This study examined 102 legs from 55 Japanese cadavers. Type classification was performed by focusing on the positional relationship between each tissue attachment and the zone where Jones fracture occurs (zone 2). The classifications were as follows: type I, attached proximal to the border between zones 1 and 2; type IIa, attached to the border between zones 1 and 2 with one attached part; and type IIb, attached across the border between zones 1 and 2 with two or more attached parts. The footprint areas of the PB, PT, LB, and LPL were compared between tissue types and within each attachment classification. Results: The PB was recorded as type I in 41 feet (40.2%), type IIa in 56 feet (54.9%), and type IIb in 5 feet (4.9%); the PT was recorded as type IIa in 54 feet (60.0%) and type IIb in 36 feet (40.0%); and the LB was recorded as type I in 27 feet (26.5%) and type IIa in 75 feet (73.5%). The LPL did not attach to the fifth metatarsal bone. No significant difference was found in the footprint area between type I PB and type I LB. Conclusion: The results indicate that type I, which attaches proximal to zone 2, occurs with PB and LB, and there was no significant difference in the footprint area between them. These findings suggest that type I is involved in traction stress. In the future, biomechanical research based on the results of this study will be necessary. Clinical Relevance: The results of this study provide basic research for investigating the mechanism of Jones fracture and the cause of delayed healing.


2020 ◽  
Vol 10 (1) ◽  
pp. 705-711
Author(s):  
Dariusz Tomaszewicz ◽  
Agnieszka Jablonska-Krysiewicz ◽  
Jerzy K. Szlendak

AbstractThe paper estimated the effect of the distribution of edge and shear stresses occurring in the façade texture layer of three-layer walls of large slab panel buildings, as well as the variability of these stresses depending on the anchorage strength of the anchorage. Bonded anchors with seven different diameters M8 ÷ M30, selected based on catalogues, were analysed. The traction stress was determined based on the destructive force, which is determined by the catalogues of manufacturers of bonded anchors. Depending on the choice of the method of repairing the connections between the textured layer and the structural layer, we give the three-layer walls a new character of work. One of the methods of strengthening the textured layer is the popular COPY-ECO system in Poland. It is a system of two anchors (horizontal and diagonal), reflecting the shape of the work of existing hangers. The article also analyses the variants of oblique anchorages for the M12 anchor with inclination angles of 30∘, 45∘ and 60∘. The extent to which the anchorage inclination angle has been assessed influences the higher parameters of the anchor’s bearing capacity due to the shearing of the textured layer.


2019 ◽  
Vol 117 (9) ◽  
pp. 1599-1614 ◽  
Author(s):  
Robert J. Asaro ◽  
Kuanpo Lin ◽  
Qiang Zhu
Keyword(s):  

2019 ◽  
Vol 181 ◽  
pp. 25-37 ◽  
Author(s):  
Obianamma E. Onochie ◽  
Alicia Zollinger ◽  
Celeste B. Rich ◽  
Michael Smith ◽  
Vickery Trinkaus-Randall

Author(s):  
Phillip L. Gould ◽  
Yuan Feng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document