scholarly journals The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation

2009 ◽  
Vol 185 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Hong Cui ◽  
Santanu K. Ghosh ◽  
Makkuni Jayaram

The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1–STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a “partitioning center” represents yet another facet of the benign parasitism of the yeast plasmid.

Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 567-578 ◽  
Author(s):  
Susan McBratney ◽  
Mark Winey

Abstract Mutation of either the yeast MPS2 or the NDC1 gene leads to identical spindle pole body (SPB) duplication defects: The newly formed SPB is improperly inserted into the nuclear envelope (NE), preventing the cell from forming a bipolar mitotic spindle. We have previously shown that both MPS2 and NDC1 encode integral membrane proteins localized at the SPB. Here we show that CUE1, previously known to have a role in coupling ubiquitin conjugation to ER degradation, is an unusual dosage suppressor of mutations in MPS2 and NDC1. Cue1p has been shown to recruit the soluble ubiquitin-conjugating enzyme, Ubc7p, to the cytoplasmic face of the ER membrane where it can ubiquitinate its substrates and target them for degradation by the proteasome. Both mps2-1 and ndc1-1 are also suppressed by disruption of UBC7 or its partner, UBC6. The Mps2-1p mutant protein level is markedly reduced compared to wild-type Mps2p, and deletion of CUE1 restores the level of Mps2-1p to nearly wild-type levels. Our data indicate that Mps2p may be targeted for degradation by the ER quality control pathway.


2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


FEBS Letters ◽  
2014 ◽  
Vol 588 (17) ◽  
pp. 2814-2821 ◽  
Author(s):  
Ngang Heok Tang ◽  
Naoyuki Okada ◽  
Chii Shyang Fong ◽  
Kunio Arai ◽  
Masamitsu Sato ◽  
...  

1993 ◽  
Vol 122 (4) ◽  
pp. 743-751 ◽  
Author(s):  
M Winey ◽  
MA Hoyt ◽  
C Chan ◽  
L Goetsch ◽  
D Botstein ◽  
...  

The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB.


2002 ◽  
Vol 43 (6) ◽  
pp. 1431-1443 ◽  
Author(s):  
Ivan Le Masson ◽  
Cosmin Saveanu ◽  
Anne Chevalier ◽  
Abdelkader Namane ◽  
Renee Gobin ◽  
...  

2018 ◽  
Vol 29 (15) ◽  
pp. 1798-1810
Author(s):  
Meenakshi Agarwal ◽  
Hui Jin ◽  
Melainia McClain ◽  
Jinbo Fan ◽  
Bailey A. Koch ◽  
...  

The budding yeast centrosome, often called the spindle pole body (SPB), nucleates microtubules for chromosome segregation during cell division. An appendage, called the half bridge, attaches to one side of the SPB and regulates SPB duplication and separation. Like DNA, the SPB is duplicated only once per cell cycle. During meiosis, however, after one round of DNA replication, two rounds of SPB duplication and separation are coupled with homologue segregation in meiosis I and sister-chromatid segregation in meiosis II. How SPB duplication and separation are regulated during meiosis remains to be elucidated, and whether regulation in meiosis differs from that in mitosis is unclear. Here we show that overproduction of the half-bridge component Kar1 leads to premature SPB separation during meiosis. Furthermore, excessive Kar1 induces SPB overduplication to form supernumerary SPBs, leading to chromosome missegregation and erroneous ascospore formation. Kar1-­mediated SPB duplication bypasses the requirement of dephosphorylation of Sfi1, another half-bridge component previously identified as a licensing factor. Our results therefore reveal an unexpected role of Kar1 in licensing meiotic SPB duplication and suggest a unique mechanism of SPB regulation during budding yeast meiosis.


2018 ◽  
Vol 29 (18) ◽  
pp. 2176-2189 ◽  
Author(s):  
Christine M. Jones ◽  
Jun-Song Chen ◽  
Alyssa E. Johnson ◽  
Zachary C. Elmore ◽  
Sierra N. Cullati ◽  
...  

Chromosome segregation and cell division are coupled to prevent aneuploidy and cell death. In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) promotes cytokinesis, but upon mitotic checkpoint activation, the SIN is actively inhibited to prevent cytokinesis from occurring before chromosomes have safely segregated. SIN inhibition during the mitotic checkpoint is mediated by the E3 ubiquitin ligase Dma1. Dma1 binds to the CK1-phosphorylated SIN scaffold protein Sid4 at the spindle pole body (SPB), and ubiquitinates it. Sid4 ubiquitination antagonizes the SPB localization of the Pololike kinase Plo1, the major SIN activator, so that SIN signaling is delayed. How this checkpoint is silenced once spindle defects are resolved has not been clear. Here we establish that Dma1 transiently leaves SPBs during anaphase B due to extensive autoubiquitination. The SIN is required for Dma1 to return to SPBs later in anaphase. Blocking Dma1 removal from SPBs by permanently tethering it to Sid4 prevents SIN activation and cytokinesis. Therefore, controlling Dma1’s SPB dynamics in anaphase is an essential step in S. pombe cell division and the silencing of the Dma1-dependent mitotic checkpoint.


2000 ◽  
Vol 11 (10) ◽  
pp. 3525-3537 ◽  
Author(s):  
Paul D. Straight ◽  
Thomas H. Giddings ◽  
Mark Winey

Sporulation in yeast requires that a modified form of chromosome segregation be coupled to the development of a specialized cell type, a process akin to gametogenesis. Mps1p is a dual-specificity protein kinase essential for spindle pole body (SPB) duplication and required for the spindle assembly checkpoint in mitotically dividing cells. Four conditional mutant alleles of MPS1disrupt sporulation, producing two distinct phenotypic classes. Class I alleles of mps1 prevent SPB duplication at the restrictive temperature without affecting premeiotic DNA synthesis and recombination. Class II MPS1 alleles progress through both meiotic divisions in 30–50% of the population, but the asci are incapable of forming mature spores. Although mutations in many other genes block spore wall formation, the cells produce viable haploid progeny, whereas mps1 class II spores are unable to germinate. We have used fluorescently marked chromosomes to demonstrate that mps1 mutant cells have a dramatically increased frequency of chromosome missegregation, suggesting that loss of viability is due to a defect in spindle function. Overall, our cytological data suggest that MPS1 is required for meiotic SPB duplication, chromosome segregation, and spore wall formation.


1994 ◽  
Vol 72 (10) ◽  
pp. 1412-1423 ◽  
Author(s):  
Kerry O'donnell

Mitosis in the wheat pathogen Tilletia caries (Basidiomycota, Tilletiales) was investigated by electron microscopy of serially sectioned, fast-frozen, freeze-substituted mitotic cells called ballistospores. A duplicated spindle pole body consisting of two identical, three-layered globular elements connected by a middle piece was attached to the extranuclear face of each nucleus at interphase. During mitosis, astral and spindle microtubules radiated from the globular elements that form the poles of an intranuclear spindle. At metaphase, chromosomes were interspersed with the nonkinetochore microtubules, and they were spread along the central two-thirds of the spindle. Each chromatid was attached to a spindle pole by a single, continuous, kinetochore microtubule. Postmitotic replication of the spindle pole body occurred during late telophase to interphase. Results from this study are presented in the form of a model of the mitotic spindle pole body cycle in Tilletia, and this model is compared with the one previously reported for Tilletia and other basidiomycetes. Key words: electron microscopy, freeze substitution, mitosis, spindle pole body, Tilletia.


1996 ◽  
Vol 109 (1) ◽  
pp. 165-177 ◽  
Author(s):  
H. Masuda ◽  
T. Shibata

The ability of the Schizosacchromyces pombe spindle pole body to nucleate microtubules is activated at the onset of mitosis for forming a mitotic spindle, but it is inactivated during interphase. We have previously developed an in vitro assay for studying the molecular mechanism of spindle pole body activation using permeabilized interphase S. pombe cells and Xenopus mitotic extracts. We have shown that the interphase spindle pole body is activated indirectly by p34cdc2 protein kinase in Xenopus mitotic extracts. In this study we examined the role of gamma-tubulin, a component of both interphase and mitotic spindle pole body, in formation of the microtubule nucleating complex at the mitotic spindle pole body. A polyclonal antibody specific to S. pombe gamma-tubulin inhibited both activation of the interphase spindle pole body and microtubule nucleation from the mitotic spindle pole body. Addition of bacterially expressed S. pombe gamma-tubulin or its amino-terminal fragments to Xenopus mitotic extracts inhibited spindle pole body activation. Affinity chromatography of partially fractionated Xenopus mitotic extracts with the amino-terminal fragment of S. pombe gamma-tubulin showed that fractions bound to the fragment supported the activation. The fractions did not contain Xenopus gamma-tubulin, showing that activation of the spindle pole body is not due to recruitment of Xenopus gamma-tubulin to the spindle pole body. The spindle pole body activation occurred in extracts depleted of p34cdc2 protein kinase or MAP kinase. The activity of the fractions bound to the fragment was inhibited by a protein kinase inhibitor, staurosporine. These results suggest that S. pombe gamma-tubulin is a component of the microtubule nucleating complex, and that the function of proteins that interact with gamma-tubulin is required for activation of the spindle pole body. We present possible models for the activation that convert the immature microtubule nucleating complex at interphase into the mature microtubule nucleating complex at mitosis.


Sign in / Sign up

Export Citation Format

Share Document