scholarly journals Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging

2011 ◽  
Vol 192 (3) ◽  
pp. 463-480 ◽  
Author(s):  
Rinshi S. Kasai ◽  
Kenichi G. N. Suzuki ◽  
Eric R. Prossnitz ◽  
Ikuko Koyama-Honda ◽  
Chieko Nakada ◽  
...  

Receptor dimerization is important for many signaling pathways. However, the monomer–dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein–coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer–monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/µm2, with a dissociation and 2D association rate constant of 11.0 s−1 and 3.1 copies/µm2s−1, respectively. At physiological expression levels of ∼2.1 receptor copies/µm2 (∼6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.

2018 ◽  
Author(s):  
Charlotte Fournier ◽  
Adam J. M. Wollman ◽  
Isabel Llorente-Garcia ◽  
Oliver Harriman ◽  
Djamila Ouarat ◽  
...  

AbstractEpidermal growth factor (EGF) signalling regulates cell growth, differentiation and proliferation in epithelium and EGF receptor (EGFR) overexpression has been reported in several carcinoma types. Structural and biochemical evidence suggests EGF binding stimulates EGFR monomer-dimer transitions, activating downstream signalling. However, mechanistic details of ligand binding to functional receptors in live cells remain contentious. We report real time single-molecule TIRF of human epithelial carcinoma cells with negligible native EGFR expression, transfected with GFP-tagged EGFR, before and after receptor activation with TMR-labelled EGF ligand. Fluorescently labelled EGFR and EGF are simultaneously tracked to 40nm precision to explore stoichiometry and spatiotemporal dynamics upon EGF binding. Using inhibitors that block binding to EGFR directly, or indirectly through HER2, our results indicate that pre-activated EGFR consists of preformed homoclusters, while larger heteroclusters including HER2 form upon activation. The relative stoichiometry of EGFR to EGF after binding peaks at 2, indicating negative cooperativity of EGFR activation.


2014 ◽  
Vol 207 (5) ◽  
pp. 599-613 ◽  
Author(s):  
Marcel Reuter ◽  
Alex Zelensky ◽  
Ihor Smal ◽  
Erik Meijering ◽  
Wiggert A. van Cappellen ◽  
...  

Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.


1975 ◽  
Vol 142 (6) ◽  
pp. 1520-1533 ◽  
Author(s):  
J C Unkeless ◽  
H N Eisen

The binding properties of surface receptors of immunoglobulins on mouse macrophages were studied with mouse myeloma proteins and normal peritoneal macrophages, thioglycollate-stimulated macrophages, and a macrophage cell line, P388D1. Primary cultures of mouse embryo fibroblasts served as controls. IgG2a proteins were bound strongly;IgG2b was bound weakly (one-twentieth as well as IgG2a);IgM, IgA, and IgG1 were not bound significantly. The number of binding sites per cell for IgG2a was 4 X 10(5) for thioglycollate-stimulated cells and 1 X 10(5) for normal and P388D1 cells. Binding was exothermal: with decreasing temperature the equilibrium (association) constants increased and dissociation rate constants decreased (at 37degreesC the respective values were 2 X 10(7) M-1 and 0.26 min-1, the latter value corresponds to a half time for dissociation of 2.6 min). From the rapidity of association and dissociation, it appears that the surface of the macrophage is in a dynamic equilibrium with IgG2a molecules in the cell's immediate microenvironment. The receptors for IgG2a are clearly specific for determinants in the immunoglobulin constant domain: two IgG2a proteins with greatly different isoelectric points (determined by isoelectric focusing) were bound with the same affinity to the same receptors; moreover, the Fc fragment was bound and Fab fragments were not. The Fc receptors for IgG2a proteins were readily eliminated by exposing macrophages briefly to trypsin. The receptors were regenerated during subsequent cultivation in serum-free medium; regeneration was inhibited totally by cycloheximide and partially by actinomycin D.


2019 ◽  
Author(s):  
Alejo Mosqueira ◽  
Pablo A. Camino ◽  
Francisco J. Barrantes

AbstractSynaptic strength depends on the number of cell-surface neurotransmitter receptors in dynamic equilibrium with intracellular pools. Dysregulation of this homeostatic balance occurs e.g. in myasthenia gravis, an autoimmune disease characterized by a decrease in the number of postsynaptic nicotinic acetylcholine receptors (nAChRs). Monoclonal antibody mAb35 mimics this effect. Here we use STORM nanoscopy to characterize the individual and ensemble dynamics of mAb35-crosslinked receptors in the clonal cell line CHO-K1/A5, which robustly expresses adult muscle-type nAChRs. Antibody labeling of live cells results in 80% receptor immobilization. The remaining mobile fraction exhibits a heterogeneous combination of Brownian and anomalous diffusion. Single-molecule trajectories exhibit a two-state switching behavior between free Brownian walks and anticorrelated walks within confinement areas. The latter act as permeable fences (∼34 nm radius, ∼400 ms lifetime). Dynamic clustering, trapping and immobilization also occur in larger nanocluster zones (120-180 nm radius) with longer lifetimes (11 ± 1 s), in a strongly cholesterol-sensitive manner. Cholesterol depletion increases the size and average duration of the clustering phenomenon; cholesterol enrichment has the opposite effect. The disclosed high proportion of mAb35-crosslinked immobile receptors, together with their anomalous, cholesterol-sensitive diffusion and clustering, provides new insights into the antibody-enhanced antigenic modulation that leads to physiopathological internalization and degradation of receptors in myasthenia.A preliminary version of this work has appeared in the biorXiv repository: https://www.biorxiv.org/content/10.1101/744664v1. The study was not pre-registered.


2020 ◽  
Author(s):  
Connor J. Thompson ◽  
Zhaoqian Su ◽  
Vinh H. Vu ◽  
Yinghao Wu ◽  
Deborah E. Leckband ◽  
...  

AbstractWe demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Connor J Thompson ◽  
Zhaoqian Su ◽  
Vinh H Vu ◽  
Yinghao Wu ◽  
Deborah E Leckband ◽  
...  

We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.


Sign in / Sign up

Export Citation Format

Share Document