scholarly journals BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells

2014 ◽  
Vol 207 (5) ◽  
pp. 599-613 ◽  
Author(s):  
Marcel Reuter ◽  
Alex Zelensky ◽  
Ihor Smal ◽  
Erik Meijering ◽  
Wiggert A. van Cappellen ◽  
...  

Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.

2020 ◽  
Vol 117 (35) ◽  
pp. 21328-21335
Author(s):  
Zhijie Chen ◽  
Alan Shaw ◽  
Hugh Wilson ◽  
Maxime Woringer ◽  
Xavier Darzacq ◽  
...  

Theoretical and experimental observations that catalysis enhances the diffusion of enzymes have generated exciting implications about nanoscale energy flow, molecular chemotaxis, and self-powered nanomachines. However, contradictory claims on the origin, magnitude, and consequence of this phenomenon continue to arise. To date, experimental observations of catalysis-enhanced enzyme diffusion have relied almost exclusively on fluorescence correlation spectroscopy (FCS), a technique that provides only indirect, ensemble-averaged measurements of diffusion behavior. Here, using an anti-Brownian electrokinetic (ABEL) trap and in-solution single-particle tracking, we show that catalysis does not increase the diffusion of alkaline phosphatase (ALP) at the single-molecule level, in sharp contrast to the ∼20% enhancement seen in parallel FCS experiments usingp-nitrophenyl phosphate (pNPP) as substrate. Combining comprehensive FCS controls, ABEL trap, surface-based single-molecule fluorescence, and Monte Carlo simulations, we establish thatpNPP-induced dye blinking at the ∼10-ms timescale is responsible for the apparent diffusion enhancement seen in FCS. Our observations urge a crucial revisit of various experimental findings and theoretical models––including those of our own––in the field, and indicate that in-solution single-particle tracking and ABEL trap are more reliable means to investigate diffusion phenomena at the nanoscale.


2020 ◽  
Author(s):  
Jia Hui Li ◽  
Paula Santos-Otte ◽  
Braedyn Au ◽  
Jakob Rentsch ◽  
Stephan Block ◽  
...  

AbstractThe plasma membrane is the interface through which cells interact with their environment. Membrane proteins are embedded in the lipid bilayer of the plasma membrane and their function in this context is often linked to their specific location and dynamics within the membrane. However, few methods are available for nanoscale manipulation of membrane protein location at the single molecule level. Here, we report the use of fluorescent magnetic nanoparticles (FMNPs) to track membrane molecules and to manipulate their movement. FMNPs allow single-particle tracking (SPT) at 10 nm spatial and 5 ms temporal resolution, and using a magnetic needle, we pull membrane components laterally through the membrane with femtonewton-range forces. In this way, we successfully dragged lipid-anchored and transmembrane proteins over the surface of living cells. Doing so, we detected submembrane barriers and in combination with super-resolution microscopy could localize these barriers to the actin cytoskeleton. We present here a versatile approach to probe membrane processes in live cells via the magnetic control of membrane protein motion.


2011 ◽  
Vol 192 (3) ◽  
pp. 463-480 ◽  
Author(s):  
Rinshi S. Kasai ◽  
Kenichi G. N. Suzuki ◽  
Eric R. Prossnitz ◽  
Ikuko Koyama-Honda ◽  
Chieko Nakada ◽  
...  

Receptor dimerization is important for many signaling pathways. However, the monomer–dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein–coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer–monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/µm2, with a dissociation and 2D association rate constant of 11.0 s−1 and 3.1 copies/µm2s−1, respectively. At physiological expression levels of ∼2.1 receptor copies/µm2 (∼6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2021 ◽  
Author(s):  
Y. Bousmah ◽  
H. Valenta ◽  
G. Bertolin ◽  
U. Singh ◽  
V. Nicolas ◽  
...  

AbstractYellow fluorescent proteins (YFP) are widely used as optical reporters in Förster Resonance Energy Transfer (FRET) based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pHs. In fact, today, there is no yellow variant derived from the EYFP with a pK1/2 below ∼5.5. Here, we characterize a new yellow fluorescent protein, tdLanYFP, derived from the tetrameric protein from the cephalochordate B. lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133 000 mol−1.L.cm−1, it is, to our knowledge, the brightest dimeric fluorescent protein available, and brighter than most of the monomeric YFPs. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and preserves this property in live cells. As a consequence, tdLanYFP allows the imaging of cellular structures with sub-diffraction resolution with STED nanoscopy. We also demonstrate that the combination of high brightness and strong photostability is compatible with the use of spectro-microscopies in single molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pHs. Finally, we show that tdLanYFP can be a FRET partner either as donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFPa very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging that is also suitable for FRET experiment including at acidic pH.


2014 ◽  
Vol 207 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Sara Löchte ◽  
Sharon Waichman ◽  
Oliver Beutel ◽  
Changjiang You ◽  
Jacob Piehler

Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.


2019 ◽  
Vol 116 (23) ◽  
pp. 11247-11252 ◽  
Author(s):  
Toru Kondo ◽  
Jesse B. Gordon ◽  
Alberta Pinnola ◽  
Luca Dall’Osto ◽  
Roberto Bassi ◽  
...  

Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sichen Pan ◽  
Chen Yang ◽  
Xin Sheng Zhao

Abstract Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.


Sign in / Sign up

Export Citation Format

Share Document