scholarly journals ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation

2015 ◽  
Vol 208 (6) ◽  
pp. 821-838 ◽  
Author(s):  
Olga Tornavaca ◽  
Minghao Chia ◽  
Neil Dufton ◽  
Lourdes Osuna Almagro ◽  
Daniel E. Conway ◽  
...  

Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell–cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin–based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin–VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin–dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell–cell tension, migration, angiogenesis, and barrier formation.

2018 ◽  
Vol 66 ◽  
pp. 93-109 ◽  
Author(s):  
Yeojung Kim ◽  
Gail A. West ◽  
Greeshma Ray ◽  
Sean P. Kessler ◽  
Aaron C. Petrey ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262152
Author(s):  
Rania Harati ◽  
Saba Hammad ◽  
Abdelaziz Tlili ◽  
Mona Mahfood ◽  
Aloïse Mabondzo ◽  
...  

Background The brain endothelial barrier permeability is governed by tight and adherens junction protein complexes that restrict paracellular permeability at the blood-brain barrier (BBB). Dysfunction of the inter-endothelial junctions has been implicated in neurological disorders such as multiple sclerosis, stroke and Alzheimer’s disease. The molecular mechanisms underlying junctional dysfunction during BBB impairment remain elusive. MicroRNAs (miRNAs) have emerged as versatile regulators of the BBB function under physiological and pathological conditions, and altered levels of BBB-associated microRNAs were demonstrated in a number of brain pathologies including neurodegeneration and neuroinflammatory diseases. Among the altered micro-RNAs, miR-27a-3p was found to be downregulated in a number of neurological diseases characterized by loss of inter-endothelial junctions and disruption of the barrier integrity. However, the relationship between miR-27a-3p and tight and adherens junctions at the brain endothelium remains unexplored. Whether miR-27a-3p is involved in regulation of the junctions at the brain endothelium remains to be determined. Methods Using a gain-and-loss of function approach, we modulated levels of miR-27a-3p in an in-vitro model of the brain endothelium, key component of the BBB, and examined the resultant effect on the barrier paracellular permeability and on the expression of essential tight and adherens junctions. The mechanisms governing the regulation of junctional proteins by miR-27a-3p were also explored. Results Our results showed that miR-27a-3p inhibitor increases the barrier permeability and causes reduction of claudin-5 and occludin, two proteins highly enriched at the tight junction, while miR-27a-3p mimic reduced the paracellular leakage and increased claudin-5 and occludin protein levels. Interestingly, we found that miR-27-3p induces expression of claudin-5 and occludin by downregulating Glycogen Synthase Kinase 3 beta (GSK3ß) and activating Wnt/ß-catenin signaling, a key pathway required for the BBB maintenance. Conclusion For the first time, we showed that miR-27a-3p is a positive regulator of key tight junction proteins, claudin-5 and occludin, at the brain endothelium through targeting GSK3ß gene and activating Wnt/ß-catenin signaling. Thus, miR-27a-3p may constitute a novel therapeutic target that could be exploited to prevent BBB dysfunction and preserves its integrity in neurological disorders characterized by impairment of the barrier’s function.


2005 ◽  
Vol 17 (9) ◽  
pp. 72
Author(s):  
M. J. McCabe ◽  
P. G. Stanton

The inter-Sertoli cell tight junction (TJ) forms the blood testis barrier (BTB) between Sertoli cells and is composed of three major transmembrane proteins: claudin-11, occludin and junctional adhesion molecule. Formation of the BTB occurs during puberty associating with an increase in circulating gonadotrophins. Claudin-11 and occludin are hormonally regulated in vitro although their importance to the function of the TJ is unknown. The aim of this study was to investigate the contribution of claudin-11 to the inter-Sertoli cell TJ in vitro by blocking gene expression using RNA interference. Two claudin-11-specific siRNA fragments were designed for this purpose. Sertoli cells in primary culture formed stable TJs within 5 days as measured by transepithelial electrical resistance (TER). The addition of siRNA for 2 days resulted in a significant (P < 0.01) 55% (mean, SD, n = 4 cultures) decrease in TER along with a major reduction in claudin-11 localisation to the TJ as assessed by immunocytochemistry. The specificity of the siRNA was shown by the presence of extensive immunostaining of occludin and of the adherens junction protein β-catenin in the same treatments. Similarly, claudin-11 mRNA expression significantly (P < 0.01) decreased by 71% (mean, SD, n = 3 cultures) in response to both claudin-11 siRNA fragments. Occludin mRNA expression was not affected. It is concluded that claudin-11 contributes at least 55% to the function of the rat Sertoli cell TJ in vitro. It is hypothesised that the remaining 45% of TJ function can be attributed to other integral proteins, such as occludin and junctional adhesion molecule. It is expected that claudin-11 and other TJ proteins play a pivotal role in the function of the BTB in vivo with potential implications in fertility and contraception.


2008 ◽  
Vol 19 (10) ◽  
pp. 4442-4453 ◽  
Author(s):  
Laurent Guillemot ◽  
Serge Paschoud ◽  
Lionel Jond ◽  
Andrea Foglia ◽  
Sandra Citi

Small GTPases control key cellular events, including formation of cell–cell junctions and gene expression, and are regulated by activating and inhibiting factors. Here, we characterize the junctional protein paracingulin as a novel regulator of the activity of two small GTPases, Rac1 and RhoA, through the functional interaction with their respective activators, Tiam1 and GEF-H1. In confluent epithelial monolayers, paracingulin depletion leads to increased RhoA activity and increased expression of mRNA for the tight junction protein claudin-2. During tight junction assembly by the calcium-switch, Rac1 shows two transient peaks of activity, at earlier (10–20 min) and later (3–8 h) time points. Paracingulin depletion reduces such peaks of Rac1 activation in a Tiam1-dependent manner, resulting in a delay in junction formation. Paracingulin physically interacts with GEF-H1 and Tiam1 in vivo and in vitro, and it is required for their efficient recruitment to junctions, based on immunofluorescence and biochemical experiments. Our results provide the first description of a junctional protein that interacts with GEFs for both Rac1 and RhoA, and identify a novel molecular mechanism whereby Rac1 is activated during junction formation.


Author(s):  
Irshad Sharafutdinov ◽  
Delara Soltan Esmaeili ◽  
Aileen Harrer ◽  
Nicole Tegtmeyer ◽  
Heinrich Sticht ◽  
...  

Campylobacter jejuni express the high temperature requirement protein A (HtrA), a secreted serine protease, which is implicated in virulence properties of the pathogen. Previous studies have shown that C. jejuni HtrA can cleave the epithelial transmembrane proteins occludin and E-cadherin in the tight and adherens junctions, respectively. In the present report, we studied the interaction of HtrA with another human tight junction protein, claudin-8. Confocal immunofluorescence experiments have shown that C. jejuni infection of the intestinal polarized epithelial cells in vitro leads to a relocation of claudin-8. Wild-type C. jejuni induced the downregulation of claudin-8 signals in the tight junctions and an accumulation of claudin-8 agglomerates in the cytoplasm, which were not seen during infection with isogenic ΔhtrA knockout deletion or protease-inactive S197A point mutants. Western blotting of protein samples from infected vs. uninfected cells revealed that an 18-kDa carboxy-terminal fragment is cleaved-off from the 26-kDa full-length claudin-8 protein, but not during infection with the isogenic ΔhtrA mutant. These results were confirmed by in vitro cleavage assays using the purified recombinant C. jejuni HtrA and human claudin-8 proteins. Recombinant HtrA cleaved purified claudin-8 in vitro giving rise to the same 18-kDa sized carboxy-terminal cleavage product. Mapping studies revealed that HtrA cleavage occurs in the first extracellular loop of claudin-8. Three-dimensional modeling of the claudin-8 structure identified an exposed HtrA cleavage site between the amino acids alanine 58 and asparagine 59, which is in well agreement with the mapping studies. Taken together, HtrA operates as a secreted virulence factor targeting multiple proteins both in the tight and adherens junctions. This strategy may help the bacteria to open the cell-to-cell junctions, and to transmigrate across the intestinal epithelium by a paracellular mechanism and establish an acute infection.


2010 ◽  
Vol 21 (7) ◽  
pp. 1200-1213 ◽  
Author(s):  
David R. Raleigh ◽  
Amanda M. Marchiando ◽  
Yong Zhang ◽  
Le Shen ◽  
Hiroyuki Sasaki ◽  
...  

In vitro studies have demonstrated that occludin and tricellulin are important for tight junction barrier function, but in vivo data suggest that loss of these proteins can be overcome. The presence of a heretofore unknown, yet related, protein could explain these observations. Here, we report marvelD3, a novel tight junction protein that, like occludin and tricellulin, contains a conserved four-transmembrane MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain. Phylogenetic tree reconstruction; analysis of RNA and protein tissue distribution; immunofluorescent and electron microscopic examination of subcellular localization; characterization of intracellular trafficking, protein interactions, dynamic behavior, and siRNA knockdown effects; and description of remodeling after in vivo immune activation show that marvelD3, occludin, and tricellulin have distinct but overlapping functions at the tight junction. Although marvelD3 is able to partially compensate for occludin or tricellulin loss, it cannot fully restore function. We conclude that marvelD3, occludin, and tricellulin define the tight junction–associated MARVEL protein family. The data further suggest that these proteins are best considered as a group with both redundant and unique contributions to epithelial function and tight junction regulation.


1998 ◽  
Vol 141 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Elisabeth E. Weiss ◽  
Martina Kroemker ◽  
Angelika-H. Rüdiger ◽  
Brigitte M. Jockusch ◽  
Manfred Rüdiger

In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction. Complex formation of vinculin and α-catenin was challenged in transfected cells. In PtK2 cells, intact α-catenin and α-catenin1-670, harboring the β-catenin– binding site, were directed to cell–cell contacts. In contrast, α-catenin697–906 fragments were recruited to cell–cell contacts, focal adhesions, and stress fibers. Our results imply that in vivo α-catenin, like vinculin, is tightly regulated in its ligand binding activity.


2018 ◽  
Vol 29 (19) ◽  
pp. 2317-2325 ◽  
Author(s):  
Barbara Noethel ◽  
Lena Ramms ◽  
Georg Dreissen ◽  
Marco Hoffmann ◽  
Ronald Springer ◽  
...  

The skin’s epidermis is a multilayered epithelial tissue and the first line of defense against mechanical stress. Its barrier function depends on an integrated assembly and reorganization of cell–matrix and cell–cell junctions in the basal layer and on different intercellular junctions in suprabasal layers. However, how mechanical stress is recognized and which adhesive and cytoskeletal components are involved are poorly understood. Here, we subjected keratinocytes to cyclic stress in the presence or absence of intercellular junctions. Both states not only recognized but also responded to strain by reorienting actin filaments perpendicular to the applied force. Using different keratinocyte mutant strains that altered the mechanical link of the actin cytoskeleton to either cell–matrix or cell–cell junctions, we show that not only focal adhesions but also adherens junctions function as mechanosensitive elements in response to cyclic strain. Loss of paxillin or talin impaired focal adhesion formation and only affected mechanosensitivity in the absence but not presence of intercellular junctions. Further analysis revealed the adherens junction protein α-catenin as a main mechanosensor, with greatest sensitivity conferred on binding to vinculin. Our data reveal a mechanosensitive transition from cell–matrix to cell–cell adhesions on formation of keratinocyte monolayers with vinculin and α-catenin as vital players.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Cong Duan ◽  
Junchi Wang ◽  
Yi Liu ◽  
Jialu Zhang ◽  
Jianyong Si ◽  
...  

AbstractPorcine deltacoronavirus (PDCoV) is a newly discovered swine enteropathogenic coronavirus with worldwide distribution. However, efficient strategies to prevent or treat the infection remain elusive. Our in vitro study revealed that ergosterol peroxide (EP) from the mushroom Cryptoporus volvatus has efficient anti-PDCoV properties. The aim of this study is to evaluate the potential of EP as a treatment for PDCoV in vivo and elucidate the possible mechanisms. Seven-day-old piglets were infected with PDCoV by oral administration in the presence or absence of EP. Piglets infected with PDCoV were most affected, whereas administration of EP reduced diarrhea incidence, alleviated intestinal lesion, and decreased viral load in feces and tissues. EP reduced PDCoV-induced apoptosis and enhanced tight junction protein expressions in the small intestine, maintaining the integrity of the intestinal barrier. EP showed immunomodulatory effect by suppressing PDCoV-induced pro-inflammatory cytokines and the activation of IκBα and NF-κB p65, and upregulating IFN-I expression. Knockdown of p38 inhibited PDCoV replication and alleviated PDCoV-induced apoptosis, implying that EP inhibited PDCoV replication and alleviated PDCoV-induced apoptosis via p38/MAPK signaling pathway. Collectively, ergosterol peroxide can protect piglets from PDCoV, revealing the potential of EP for development as a promising strategy for treating and controlling the infection of PDCoV.


Sign in / Sign up

Export Citation Format

Share Document