scholarly journals The EB1–Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation

2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Nikolay Kornakov ◽  
Bastian Möllers ◽  
Stefan Westermann

Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.

2018 ◽  
Vol 46 (6) ◽  
pp. 1665-1672 ◽  
Author(s):  
Claire T. Friel ◽  
Julie P. Welburn

The Kinesin superfamily is a large group of molecular motors that use the turnover of ATP to regulate their interaction with the microtubule cytoskeleton. The coupled relationship between nucleotide turnover and microtubule binding is harnessed in various ways by these motors allowing them to carry out a variety of cellular functions. The Kinesin-13 family is a group of specialist microtubule depolymerising motors. Members of this family use their microtubule destabilising activity to regulate processes such as chromosome segregation, maintenance of cilia and neuronal development. Here, we describe the current understanding of the structure of this family of kinesins and the role different parts of these proteins play in their microtubule depolymerisation activity and in the wider function of this family of kinesins.


2020 ◽  
Author(s):  
Michael Heyne ◽  
Jason Shirian ◽  
Itay Cohen ◽  
Yoav Peleg ◽  
Evette S. Radisky ◽  
...  

AbstractEach protein-protein interaction (PPI) has evolved to possess binding affinity that is compatible with its cellular function. As such, cognate enzyme/inhibitor interactions frequently exhibit very high binding affinities, while structurally similar non-cognate PPIs possess substantially weaker binding affinities. To understand how slight differences in sequence and structure could lead to drastic changes in PPI binding free energy (ΔΔGbind), we study three homologous PPIs that span nine orders of magnitude in binding affinity and involve a serine protease interacting with an inhibitor BPTI. Using state-of-the-art methodology that combines protein randomization and affinity sorting coupled to next-generation sequencing and data normalization, we report quantitative binding landscapes consisting of ΔΔGbind values for the three PPIs, gleaned from tens of thousands of single and double mutations in the BPTI binding interface. We demonstrate that the three homologous PPIs possess drastically different binding landscapes and lie at different points in respect to the landscape maximum. Furthermore, the three PPIs demonstrate distinct patterns of coupling energies between two simultaneous mutations that depend not only on positions involved but also on the nature of the mutation. Interestingly, we find that in all three PPIs positive epistasis is frequently observed at hot-spot positions where mutations lead to loss of high affinity, while conversely negative epistasis is observed at cold-spot positions, where mutations lead to affinity enhancement. The new insights on PPI evolution revealed in this study will be invaluable in understanding evolution of other biological complexes and can greatly facilitate design of novel high-affinity protein inhibitors.SignificanceProtein-protein interactions (PPIs) have evolved to display binding affinities that can support their function. As such, cognate and non-cognate PPIs could be highly similar structurally but exhibit huge differences in binding affinities. To understand this phenomenon, we studied the effect of tens of thousands of single and double mutations on binding affinity of three homologous protease-inhibitor complexes. We show that binding landscapes of the three complexes are strikingly different and depend on the PPI evolutionary optimality. We observe different patterns of couplings between mutations for the three PPIs with negative and positive epistasis appearing most frequently at hot-spot and cold-spot positions, respectively. The evolutionary trends observed here are likely to be universal to all biological complexes in the cell.


2020 ◽  
Vol 76 (9) ◽  
pp. 876-888
Author(s):  
Ravi K. Lokareddy ◽  
Ying-Hui Ko ◽  
Nathaniel Hong ◽  
Steven G. Doll ◽  
Marcin Paduch ◽  
...  

The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL. Structural studies of TerL from bacteriophage P22 have been hindered by the conformational flexibility of this enzyme and its susceptibility to proteolysis. Here, an unbiased, synthetic phage-display Fab library was screened and a panel of high-affinity Fabs against P22 TerL were identified. This led to the discovery of a recombinant antibody fragment, Fab4, that binds a 33-amino-acid α-helical hairpin at the N-terminus of TerL with an equilibrium dissociation constant K d of 71.5 nM. A 1.51 Å resolution crystal structure of Fab4 bound to the TerL epitope (TLE) together with a 1.15 Å resolution crystal structure of the unliganded Fab4, which is the highest resolution ever achieved for a Fab, elucidate the principles governing the recognition of this novel helical epitope. TLE adopts two different conformations in the asymmetric unit and buries as much as 1250 Å2 of solvent-accessible surface in Fab4. TLE recognition is primarily mediated by conformational changes in the third complementarity-determining region of the Fab4 heavy chain (CDR H3) that take place upon epitope binding. It is demonstrated that TLE can be introduced genetically at the N-terminus of a target protein, where it retains high-affinity binding to Fab4.


Biochemistry ◽  
2002 ◽  
Vol 41 (16) ◽  
pp. 5086-5092 ◽  
Author(s):  
Victoria J. Wesley ◽  
Stuart R. Hawtin ◽  
Helen C. Howard ◽  
Mark Wheatley

1999 ◽  
Vol 342 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Simon DOWLER ◽  
Richard A. CURRIE ◽  
C. Peter DOWNES ◽  
Dario R. ALESSI

We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P3 and PtdIns(3,4)P2, but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P3 and PtdIns(3,4)P2.


2002 ◽  
Vol 158 (4) ◽  
pp. 625-637 ◽  
Author(s):  
Shwetal Mehta ◽  
Xian Mei Yang ◽  
Clarence S. Chan ◽  
Melanie J. Dobson ◽  
Makkuni Jayaram ◽  
...  

The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes.


2007 ◽  
Vol 283 (3) ◽  
pp. 1572-1579 ◽  
Author(s):  
Milan Osusky ◽  
Lisa Teschke ◽  
Xiaoying Wang ◽  
Kevin Wong ◽  
J. Thomas Buckley

Aerolysin is a bacterial toxin that binds to glycosylphosphatidylinositol-anchored proteins (GPI-AP) on mammalian cells and oligomerizes, inserting into the target membranes and forming channels that cause cell death. We have made a variant of aerolysin, R336A, that has greatly reduced the ability to bind to GPI-AP, and as a result it is only very weakly active. Fusion of interleukin 2 (IL2) to the N terminus of R336A-aerolysin results in a hybrid that has little or no activity against cells that do not have an IL2 receptor because it cannot bind to the GPI-AP on the cells. Strikingly, the presence of the IL2 moiety allows this hybrid to bind to cells displaying high affinity IL2 receptors. Once bound, the hybrid molecules form insertion-competent oligomers. Cell death occurs at picomolar concentrations of the hybrid, whereas the same cells are insensitive to much higher concentrations of R336A-aerolysin lacking the IL2 domain. The targeted channel-forming hybrid protein may have important advantages as a therapeutic agent.


2018 ◽  
Author(s):  
Cedric A. Brimacombe ◽  
Jordan E. Burke ◽  
Jahan-Yar Parsa ◽  
Jessica N. Witchley ◽  
Laura S. Burrack ◽  
...  

Eukaryotes have evolved elaborate mechanisms to ensure that chromosomes segregate with high fidelity during mitosis and meiosis1, and yet specific aneuploidies can be adaptive during environmental stress2,3. Here, we identify a chromatin-based system for inducible aneuploidy in a human pathogen. Candida albicans utilizes chromosome missegregation to acquire resistance to antifungal drugs4,5 and for ploidy reduction after mating6. We discovered that the ancestor of C. albicans and two related pathogens evolved a variant of histone H2A that lacks the conserved phosphorylation site for Bub1 kinase7, a key regulator of chromosome segregation1. Expression of this variant controls the rates of aneuploidy and antibiotic resistance in this species. Moreover, CENP-A/Cse4, the histone H3 that specifies centromeres, is depleted from tetraploid mating products and virtually eliminated from cells exposed to aneuploidy-promoting cues. Thus, changes in chromatin regulation can confer the capacity for rapid evolution in eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document