In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus

2000 ◽  
Vol 38 (3) ◽  
pp. 552-564 ◽  
Author(s):  
Anne-Marie Marini ◽  
Bruno André
1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


1977 ◽  
Vol 166 (3) ◽  
pp. 559-563 ◽  
Author(s):  
J M Haslam ◽  
A M Astin ◽  
W W Nichols

1. The membrane sterol composition of mitochondria of the ole-3 mutant of Saccharomyces cerevisiae was manipulated by growing the organism in the presence of Tween 80 (1%, W/V) plus defined supplements o- delta-aminolaevulinate. 2. Changes in mitochondrial sterol content induced considerable changes in the adenine nucleotide transporter. 3. As the sterol content was decreased, the affinity of the transporter for ATP did not alter significantly, but the rate of ATP uptake was greatly decreased, the total number of atractylate-sensitive binding sites diminished, and the proportion of high-affinity binding sites was decreased. 4. Since sterol depletion also uncouples oxidative phosphorylation [Astin & Haslam (1977) Biochem. J., 166, 287-298] and prevents the intramitochondrial generation of ATP, the decrease in the rate of ATP uptake by sterol-depleted mitochondria will cause a decrease in intramitochondrial ATP concentrations in vivo. This probably explains the inhibition of mitochondrial macromolecular synthesis that has previously been reported in lipid-depleted yeast mitochondria.


2004 ◽  
Vol 24 (23) ◽  
pp. 10300-10312 ◽  
Author(s):  
Antje Geissenhöner ◽  
Christoph Weise ◽  
Ann E. Ehrenhofer-Murray

ABSTRACT Nα acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was Nα acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, Nα acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Δ was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Δ and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which Nα acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.


1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


When a chimeric gene encoding a ubiquitin: β-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae , ubiquitin is efficiently cleaved off the nascent fusion protein, yielding a deubiquitinated β-galactosidase (βgal). With one exception, this cleavage takes place irrespective of the nature of the amino acid residue of βgal at the ubiquitin-βgal junction. This result, in effect, allows one to expose different residues at the N-termini of the otherwise identical βgal proteins produced in vivo . The βgal proteins thus designed exhibit a striking diversity of in vivo half-lives, from more than 10h to less than 3 min, depending on the nature of the amino acid exposed at the N-terminus of βgal. The N-terminal location of an amino acid is essential for its effect on βgal half-life. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on βgal when present at its N-terminus (the ‘N-end rule’). The known N-terminal residues in long-lived intracellular proteins from both prokaryotes and eukaryotes are exclusively of the stabilizing class as predicted by the N-end rule. In contrast, a majority of the N-terminal residues in compartmentalized (e.g. secreted) proteins are of the destabilizing class. The N-end rule may thus underlie both the diversity of protein half-lives in vivo and the selective destruction of otherwise normal but miscompartmentalized proteins. The N-end may also account for the function of the previously described post-translational addition of single amino acids to protein N-termini. Thus the recognition of an N-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.


1996 ◽  
Vol 16 (6) ◽  
pp. 2545-2553 ◽  
Author(s):  
J Recht ◽  
B Dunn ◽  
A Raff ◽  
M A Osley

The presence of H2A-H2B dimers in nucleosomes can inhibit the binding of transcription factors to chromatin templates. To study the roles of histones H2A and H2B in transcriptional repression in vivo, mutant forms of these histones were analyzed in two different assay systems. Two repression domains were identified in H2A. One domain includes residues that fall in the beginning of the H2A-H2B dimerization region, and the second is in the H2A N terminus, a region of potential interactions with nonhistone proteins. The function of H2A and H2B in one repression assay was found to be dependent on three SPT (suppressor of Ty) genes whose products are important for chromatin-mediated repression. These results suggest that repressive chromatin structure may be established through the interactions of the Spt proteins with these histones. In contrast, other proteins, the products of the HIR (histone regulation) genes, may function to direct H2A and H2B to specific promoters.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Lorenzo Tarli ◽  
Enrica Balza ◽  
Francesca Viti ◽  
Laura Borsi ◽  
Patrizia Castellani ◽  
...  

Angiogenesis is a characteristic feature of many aggressive tumors and of other relevant disorders. Molecules capable of specifically binding to new-forming blood vessels, but not to mature vessels, could be used as selective vehicles and would, therefore, open diagnostic and therapeutic opportunities. We have studied the distribution of the ED-B oncofetal domain of fibronectin, a marker of angiogenesis, in four different tumor animal models: the F9 murine teratocarcinoma, SKMEL-28 human melanoma, N592 human small cell lung carcinoma, and C51 human colon carcinoma. In all of these experimental models we observed accumulation of the fibronectin isoform containing the ED-B domain around neovascular structures when the tumors were in the exponentially growing phase, but not in the slow-growing phase. Then we performed biodistribution studies in mice bearing a subcutaneously implanted F9 murine teratocarcinoma, using a high-affinity human antibody fragment (L19) directed against the ED-B domain of fibronectin. Radiolabeled L19, but not an irrelevant anti-lysozyme antibody fragment (D1.3), efficiently localizes in the tumoral vessels. The maximal dose of L19 accumulated in the tumor was observed 3 hours after injection (8.2% injected dose per gram). By virtue of the rapid clearance of the antibody fragment from the circulation, tumor-to-blood ratios of 1.9, 3.7, and 11.8 were obtained at 3, 5, and 24 hours, respectively. The tumor-targeting performance of L19 was not dose-dependent in the 0.7 to 10 μg range of injected antibody. The integral of the radioactivity localized in tumoral vessels over 24 hours was greater than 70-fold higher than the integral of the radioactivity in blood over the same time period, normalized per gram of tissue or fluid. These findings quantitatively show that new-forming blood vessels can selectively be targeted in vivo using specific antibodies, and suggest that L19 may be of clinical utility for the immunoscintigraphic detection of angiogenesis in patients.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


Sign in / Sign up

Export Citation Format

Share Document