scholarly journals SECRETION AND ENDOCYTOSIS IN INSULIN-STIMULATED RAT ADRENAL MEDULLA CELLS

1973 ◽  
Vol 56 (2) ◽  
pp. 540-558 ◽  
Author(s):  
Susan J. Abrahams ◽  
Eric Holtzman

Insulin was used to deplete the adrenalin stores of rat adrenal medulla cells. Release of secretion was observed to occur by exocytosis. In addition, during the stages of massive release of secretory granules, the insulin-treated preparations showed greatly enhanced endocytic uptake of horseradish peroxidase. The tracer was taken up within vesicles, tubules, multivesicular bodies, and dense bodies. From acid phosphatase studies and from previous work it appears that many of the structures in which peroxidase accumulates are lysosomes or are destined to fuse with lysosomes. Subsequent to the period of intense exocytosis and endocytosis, there is a transient accumulation of lipid droplets in the adrenalin cells. The cells then regranulate, with new granules forming near the Golgi region. These results suggest that under the conditions used, much of the membrane that initially surrounds secretory granules is degraded after release of the granules.

1968 ◽  
Vol 37 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Nancy J. Lane

The neuronal perikarya of the grasshopper contain sudanophilic lipochondria which exhibit an affinity for vital dyes. These lipochondria are membrane-delimited and display acid phosphatase activity; hence they correspond to lysosomes. Unlike those of most vertebrates, these lysosomes also hydrolyze thiamine pyrophosphate and adenosine triphosphate. Like vertebrate lysosomal "dense bodies," they are electron-opaque and contain granular, vesicular, or lamellar material. Along with several types of smaller dense bodies, they are found in close spatial association with the Golgi apparatus. The Golgi complexes are frequently arranged in concentric configurations within which these dense bodies lie. Some of the smaller dense bodies often lie close to or in association with the periphery of dense multivesicular bodies. Further, bodies occur that display gradations in structure between these multivesicular bodies and the dense lysosomes. Acid phosphatase activity is present in the small as well as the larger dense bodies, in the multivesicular bodies, and in some of the Golgi saccules, associated vesicles, and fenestrated membranes; thiamine pyrophosphatase is found in both the dense bodies and parts of the Golgi complex. The close spatial association of these organelles, together with their enzymatic similarities, suggests the existence of a functional or developmental relationship between them.


1968 ◽  
Vol 16 (5) ◽  
pp. 320-336 ◽  
Author(s):  
ERIC HOLTZMAN ◽  
REGINA DOMINITZ

The adrenalin-producing cells of the rat adrenal medulla have been studied by light and electron microscopy. Frozen sections of glutaraldehyde-perfused material were incubated for demonstration of "marker" enzymes for lysosomes (acid phosphatase, aryl sulfatase) and Golgi apparatus (thiamine pyrophosphatase). In addition, the uptake and fate of intravenously administered horseradish peroxidase was followed. Acid phosphatase activity is demonstrable in secretory granules, Golgi saccules, vesicles in the Golgi area and in the agranular tubules and cisternae (GERL) from which secretory granules appear to form at the inner surface of the Golgi apparatus. Endoplasmic reticulum with ribosomes on only one surface is closely apposed to both inner and outer aspects of the Golgi apparatus. Peroxidase is taken up in vesicles, tubules and "cup-like" bodies. The latter apparently transform into multivesicular bodies. A possible source of the acid phosphatase found in multivesicular bodies is the small vesicles from the Golgi apparatus or GERL.


1966 ◽  
Vol 31 (2) ◽  
pp. 319-347 ◽  
Author(s):  
Robert E. Smith ◽  
Marilyn G. Farquhar

The nature and content of lytic bodies and the localization of acid phosphatase (AcPase) activity were investigated in mammotrophic hormone-producing cells (MT) from rat anterior pituitary glands. MT were examined from lactating rats in which secretion of MTH1 was high and from postlactating rats in which MTH secretion was suppressed by removing the suckling young. MT from lactating animals contained abundant stacks of rough-surfaced ER, a large Golgi complex with many forming secretory granules, and a few lytic bodies, primarily multivesicular bodies and dense bodies. MT from postlactating animals, sacrificed at selected intervals up to 96 hr after separation from their suckling young, showed (a) progressive involution of the protein synthetic apparatus with sequestration of ER and ribosomes in autophagic vacuoles, and (b) incorporation of secretory granules into multivesicular and dense bodies. The content of mature granules typically was incorporated into dense bodies whereas that of immature granules found its way preferentially into multivesicular bodies. The secretory granules and cytoplasmic constituents segregated within lytic bodies were progressively degraded over a period of 24 to 72 hr to yield a common residual body, the vacuolated dense body. In MT from lactating animals, AcPase reaction product was found in lytic bodies, and in several other sites not usually considered to be lysosomal in nature, i.e., inner Golgi cisterna and associated vesicles, and around most of the immature, and some of the mature secretory granules. In MT from postlactating animals, AcPase was concentrated in lytic bodies; reaction product and incorporated secretory granules were frequently recognizable within the same multivesicular or dense body which could therefore be identified as "autolysosomes" connected with the digestion of endogenous materials. Several possible explanations for the occurrence of AcPase in nonlysosomal sites are discussed. From the findings it is concluded that, in secretory cells, lysosomes function in the regulation of the secretory process by providing a mechanism which takes care of overproduction of secretory products.


1987 ◽  
Vol 35 (5) ◽  
pp. 565-570 ◽  
Author(s):  
C Oliver ◽  
Y Yuasa

We examined the distribution of trimetaphosphatase (TMPase)-positive basal lysosomes in pancreas, parotid, submandibular, sublingual, and exorbital lacrimal glands from rats, rabbits, and guinea pigs. The location of the basal lysosomes was compared to that of the acid phosphatase (AcPase)-positive lysosomes. In all of the tissues examined from rat and rabbit, AcPase activity was localized primarily to the Golgi region. Reaction product was localized in GERL, immature secretory granules, and lysosomes lying adjacent to the Golgi apparatus. TMPase activity was found in basal lysosomes and in occasional elongated lysosomes adjacent to the Golgi apparatus. In guinea pig, the distribution of TMPase activity was identical to that seen in the other two species, but a significant number of lysosomes in the basal region of the cells also contained AcPase activity. These results confirm and extend our previous finding (J Histochem Cytochem 31:1209, 1983) that exocrine acinar cells possess two distinct populations of lysosomes. The lysosomes in the Golgi region contain both AcPase and TMPase activity, whereas those in the basal portion of the cells are reactive predominantly for TMPase. The functional significance of the two populations of lysosomes is not understood at present.


1968 ◽  
Vol 3 (3) ◽  
pp. 357-364
Author(s):  
C. R. HOPKINS ◽  
BRIDGET I. BAKER

In the prolactin cell of the eel adenohypophysis acid phosphatase activity occurs within the majority of the Golgi cisternae and developing secretory granules. Acid phosphatase is also present within larger membrane-bound bodies, most of which are similar to the lytic dense bodies described in other cell types. In discussing the functional significance of this enzyme distribution particular attention is paid to its association with the secretory mechanisms of the prolactin cell.


1971 ◽  
Vol 19 (12) ◽  
pp. 775-797 ◽  
Author(s):  
ANDRÉE TIXIER-VIDAL ◽  
RENÉE PICART

Structures demonstrating the presence of glycoproteins, acid phosphatase activity and OsO4 impregnation were localized by means of the electron microscope in duck and in quail pituitary cells. Two methods for the electron microscopic demonstration of glycoproteins were used: a chromic acid-phosphotungstic acid mixture on glycol-methacrylate-embedded tissues, and the periodic acid-thiocarbohydrazide-silver proteinate technique. Both methods showed glycoproteins in the following sites: ( a) the secretory granules in three types of cells (A, B, C) which are part of the seven different cells of the avian pituitary; ( b) the several kinds of dense bodies which are richer in reaction product than the secretory granules. A correlation with previous studies on similar species of birds is helpful in identifying each of the three positive types of cells as thyrotropic cell (A), prolactin cell (B) and gonadotropic cell (C). The presence of glycoproteins within the Golgi saccules (on condensing granules) was found with the periodic acid-thiocarbohydrazide-silver proteinate method in these gonadotropic cells only. In gonadotropic and thyrotropic cells, acid phosphatase activity is weak in the inner Golgi saccules and strong in the "Golgi Endoplasmic Reticulum Lysosomes" system, in the lysosomes, in the dense bodies and in the vacuolated dense bodies. The structures which are richest in glycoproteins are also those which have the most acid phosphatase activity. On the contrary, OsO4-stained structures in duck gonadotropic cells (nuclear pericisterna, rough endoplasmic reticulum, cisternae and outer Golgi saccules) have no glycoproteins or acid phosphatase activity.


1967 ◽  
Vol 35 (2) ◽  
pp. 357-376 ◽  
Author(s):  
Daniel S. Friend ◽  
Marilyn G. Farquhar

The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.


1965 ◽  
Vol 25 (2) ◽  
pp. 41-55 ◽  
Author(s):  
Gerald B. Gordon ◽  
Leonard R. Miller ◽  
Klaus G. Bensch

DNA-protein coacervates containing colloidal gold particles were readily phagocytized by strain L fibroblasts. During the subsequent digestion process, the gold particles served as markers which permitted the demonstration of the evolution of digestive vacuoles to multivesicular bodies and finally to dense bodies. Acid phosphatase and esterolytic activity was present in these structures. The hydrolytic enzymes were apparently brought to the phagocytotic vacuoles in small vesicles originating in the Golgi region. These vesicles entered the vacuoles prior to the digestion of the coacervates and the appearance of positive cytochemical reactions. The cytoplasmic dense bodies frequently merged with the phagocytotic vacuoles. This was demonstrated by prelabeling the dense bodies with colloidal iron prior to phagocytosis of the coacervates. In addition, evidence is presented for the interrelationship of the phagocytotic and autophagic pathways.


Author(s):  
Z. Hruban ◽  
J. R. Esterly ◽  
G. Dawson ◽  
A. O. Stein

Samples of a surgical liver biopsy from a patient with lactosyl ceramidosis were fixed in paraformaldehyde and postfixed in osmium tetroxide. Hepatocytes (Figs. 1, 2) contained 0.4 to 2.1 μ inclusions (LCI) limited by a single membrane containing lucid matrix and short segments of curved, lamellated and circular membranous material (Fig. 3). Numerous LCI in large connective tissue cells were up to 11 μ in diameter (Fig. 2). Heterogeneous dense bodies (“lysosomes”) were few and irregularly distributed. Rough cisternae were dilated and contained smooth vesicles and surface invaginations. Close contact with mitochondria was rare. Stacks were small and rare. Vesicular rough reticulum and glycogen rosettes were abundant. Smooth vesicular reticulum was moderately abundant. Mitochondria were round with few cristae and rare matrical granules. Golgi complex was seen rarely (Fig. 1). Microbodies with marginal plates were usual. Multivesicular bodies were very rare. Neutral lipid was rare. Nucleoli were small and perichromatin granules were large. Small bile canaliculi had few microvilli (Fig. 1).


1967 ◽  
Vol 15 (7) ◽  
pp. 375-380 ◽  
Author(s):  
WERNER STRAUS

Small phagosomes (micropinocytic vesicles and vacuoles) which had taken up injected horseradish peroxidase were identified by staining for peroxidase with benzidine and H2O2. Because of the small size of the granules and the possibility of artifacts, previously described procedures had to be modified in several respects. Prefixation of the tissue by perfusion at 37°C prevented artifacts of diffusion and adsorption of peroxidase. The blue product of the reaction of peroxidase with benzidine in the small phagosomes was preserved and fading to brown was prevented by cooling the tissue section to –10° to –15°C during its processing through polar media. The blue reaction product was stable as soon as the section was transferred to an apolar medium. Small phagosomes were visualized together with lysosomes and phago-lysosomes in the same cells by double staining for acid phosphatase and peroxidase in contrasting colors. The incubation for acid phosphatase was performed at 4°C since low temperature increased the stability of peroxidase in the acid medium. Factors which form the basis for other improvements of the procedure are discussed.


Sign in / Sign up

Export Citation Format

Share Document