scholarly journals ON THE ATTACHMENT OF THE NUCLEAR PORE COMPLEX

1974 ◽  
Vol 62 (3) ◽  
pp. 746-754 ◽  
Author(s):  
Robert Peter Aaronson ◽  
Günter Blobel

Electron microscope examination of isolated rat liver nuclei after treatment with the detergent Triton X-100 revealed the complete removal of both the inner and outer membranes of the nuclear envelope. The envelope-denuded nuclei did not show any change in either shape or internal ultrastructure. Most strikingly, the nuclear pore complexes, which in untreated nuclei appear to be integral components of the nuclear envelope, were retained in their characteristic location at the distal ends of the channels leading through the peripheral heterochromatin. Determination of the chemical composition of detergent-treated nuclei showed that over 95% of the nuclear phospholipid was solubilized, thus corroborating the morphological absence of nuclear membranes. Furthermore, detergent treatment also solubilized approximately 10% of the nuclear protein. Analysis of the solubilized protein by polyacrylamide gel electrophoresis in the presence of SDS indicated that these proteins belong to a few specific classes which presumably represent the major polypeptides of the nuclear membranes. The total absence of the nuclear envelope on both morphological and biochemical grounds supports the idea that the nuclear pore complex does not require the membranes either for attachment to the nucleus or for maintenance of its own structural integrity.

2009 ◽  
Vol 20 (2) ◽  
pp. 616-630 ◽  
Author(s):  
Hui-Lin Liu ◽  
Colin P.C. De Souza ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


1997 ◽  
Vol 136 (6) ◽  
pp. 1185-1199 ◽  
Author(s):  
Mirella Bucci ◽  
Susan R. Wente

While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.


2009 ◽  
Vol 185 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Michael Rexach

All nucleocytoplasmic traffic of macromolecules occurs through nuclear pore complexes (NPCs), which function as stents in the nuclear envelope to keep nuclear pores open but gated. Three studies in this issue (Flemming, D., P. Sarges, P. Stelter, A. Hellwig, B. Böttcher, and E. Hurt. 2009. J. Cell Biol. 185:387–395; Makio, T., L.H. Stanton, C.-C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. J. Cell Biol. 185:459–491; Onishchenko, E., L.H. Stanton, A.S. Madrid, T. Kieselbach, and K. Weis. 2009. J. Cell Biol. 185:475–491) further our understanding of the NPC assembly process by reporting what happens when the supply lines of key proteins that provide a foundation for building these marvelous supramolecular structures are disrupted.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9475
Author(s):  
Yuri Y. Shevelyov

For a long time, the nuclear lamina was thought to be the sole scaffold for the attachment of chromosomes to the nuclear envelope (NE) in metazoans. However, accumulating evidence indicates that nuclear pore complexes (NPCs) comprised of nucleoporins (Nups) participate in this process as well. One of the Nups, Elys, initiates NPC reassembly at the end of mitosis. Elys directly binds the decondensing chromatin and interacts with the Nup107–160 subcomplex of NPCs, thus serving as a seeding point for the subsequent recruitment of other NPC subcomplexes and connecting chromatin with the re-forming NE. Recent studies also uncovered the important functions of Elys during interphase where it interacts with chromatin and affects its compactness. Therefore, Elys seems to be one of the key Nups regulating chromatin organization. This review summarizes the current state of our knowledge about the participation of Elys in the post-mitotic NPC reassembly as well as the role that Elys and other Nups play in the maintenance of genome architecture.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
David J Thaller ◽  
Matteo Allegretti ◽  
Sapan Borah ◽  
Paolo Ronchi ◽  
Martin Beck ◽  
...  

The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Natalia Wesolowska ◽  
Ivan Avilov ◽  
Pedro Machado ◽  
Celina Geiss ◽  
Hiroshi Kondo ◽  
...  

The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) that are stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin ‘shell’ in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina, sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining stretches of membrane accumulate NPCs that are associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. We reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts, such as nuclear rupture observed in cancer cells.


1990 ◽  
Vol 97 (3) ◽  
pp. 571-580
Author(s):  
S. Whytock ◽  
R.D. Moir ◽  
M. Stewart

We have used enzymic digestion as a structural probe to investigate components of the nuclear envelope of germinal vesicles from Xenopus oocytes. Previous studies have shown that these envelopes are composed of a double membrane in which nuclear pore complexes are embedded. The nuclear pore complexes are linked to a fibrous lamina that underlies the nucleoplasmic face of the envelope. The pores are also linked by pore-connecting fibrils that attach near their cytoplasmic face. Xenopus oocyte nuclear envelopes were remarkably resistant to extraction with salt solutions and, even after treatment with 1 M NaCl or 3 M MgCl2, pores, lamina and pore-connecting fibrils remained intact. However, mild proteolysis with trypsin selectively removed the lamina fibres from Triton-extracted nuclear envelopes to leave only the pore complexes and connecting fibrils. This observation confirmed that the pore-connecting fibrils were different from the lamina fibres and were probably constructed from different proteins. Trypsin digestion followed by Triton treatment resulted in the complete disintegration of the nuclear envelope, providing direct evidence for a structural role for the lamina in maintaining envelope integrity. Digestion with ribonuclease did not produce any marked change in the structure of Triton-extracted nuclear envelopes, indicating that probably neither the pore-connecting fibrils nor the cytoplasmic granules on the pore complexes contained a substantial proportion of RNA that was vital for their structural integrity.


2017 ◽  
Vol 216 (10) ◽  
pp. 3145-3159 ◽  
Author(s):  
Diego L. Lapetina ◽  
Christopher Ptak ◽  
Ulyss K. Roesner ◽  
Richard W. Wozniak

Interactions occurring at the nuclear envelope (NE)–chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE–chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins—the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170—physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering.


2001 ◽  
Vol 154 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Susan K. Lyman ◽  
Larry Gerace

In vivo studies on the dynamics of the nuclear pore complex (NPC) in yeast suggested that NPCs are highly mobile in the nuclear envelope. However, new evidence indicates that in mammalian cells NPCs are stably attached to a flexible lamina framework, but a peripheral component can exchange rapidly with an intranuclear pool.


Sign in / Sign up

Export Citation Format

Share Document