scholarly journals [Ciliogenesis in the mucous cells of the quail oviduct. I. Ultrastructural study in the laying quail]

1976 ◽  
Vol 71 (2) ◽  
pp. 449-459 ◽  
Author(s):  
D Sandoz ◽  
E Biosvieux-Ulrich

The luminal epithelium of the oviduct (magnum) of laying quails is composed of ciliated cells and mucous cells. Ciliogenesis was observed in some of the mucous cells. Both centrioles of the diplosome migrate to the top of the cell, and one of them induces the formation of a rudimentary cilium. In some of the other cells, that are filled with mucous granules, the formation of basal bodies by an acentriolar pathway was observed. In these cells, numerous, dense fibrous masses are associated with the forming face of the Golgi apparatus. In the Golgi zone, generative complexes composed of a deuterosome and some forming procentrioles were found. Cilia develop from completed basal bodies. During ciliogenesis, the Golgi apparatus is disorganized, and generally the production of mucous granules is arrested. The nucleus is also modified: it becomes larger and the chromatin is dispersed. It is assumed that mucous cells are able to be transformed into ciliated cells in the oviduct of laying quails.

Author(s):  
S.R. Allegra

The respective roles of the ribo somes, endoplasmic reticulum, Golgi apparatus and perhaps nucleus in the synthesis and maturation of melanosomes is still the subject of some controversy. While the early melanosomes (premelanosomes) have been frequently demonstrated to originate as Golgi vesicles, it is undeniable that these structures can be formed in cells in which Golgi system is not found. This report was prompted by the findings in an essentially amelanotic human cellular blue nevus (melanocytoma) of two distinct lines of melanocytes one of which was devoid of any trace of Golgi apparatus while the other had normal complement of this organelle.


The formation of mucus in goblet cells and its relation to the Golgi apparatus has been studied by various workers. Nassanow (1923) showed clearly that the mucin granules in the goblet cells of Triton originated in the Golgi apparatus, and so brought secretion in these cells into line with his theory of the bound secretion. More recently Clara (1926) has shown in the goblet cells of birds that the mucin first appears in the region next to the nucleus, between it and the gland lumen. Florey (1932, a, b ) has considered this more extensively in two recent papers, and for a number of mammals has shown that the mucin granules of goblet cells first form in the meshes of the Golgi network. In epithelial cells of the mouse vagina, undergoing conversion into mucous cells, he has found that the same process occurs. In a recent investigation of secretory formation in the salivary glands and pancreas it was found by the present author that in every cell type examined the young secretory granules first appeared in the basal region of the cell in relation to the mitochondria. Subsequent emigration occurred into the Golgi zone, where they underwent conversion into mature secretory granules. In the mucous cells of the salivary glands it was shown that these newly formed granules might be stained intravitam by Janus green or neutral red, and that in fixed preparations they stained selectively with acid fuchsin as described by Noll (1902), In the light of this work it appeared probable that while mucin formation might occur in the Golgi zone of the goblet cells as described by these authors, the origin of the granules might lie in the basal region of the cell.


1968 ◽  
Vol 37 (2) ◽  
pp. 370-393 ◽  
Author(s):  
F. R. Turner

Spermatogenesis in the charophyte Nitella has been followed in antheridia prepared for light and electron microscopy. The antheridial filament cells contain paired centrioles which are similar in structure and behavior to the centrioles of animal cells. In the early spermatid, the centrioles undergo an initial elongation at their distal ends and become joined by a spindle-shaped fibrous connection. At the same time, their proximal ends are closely associated with the development of a layer of juxtaposed microtubules which will form the microtubular sheath. The architectural arrangement of these microtubules suggests that they constitute a cytoskeletal system, forming a framework along which the mitochondria and plastids become aligned and along which the nucleus undergoes extensive elongation and differentiation. The microtubular sheath persists in the mature sperm. During mid-spermatid stages, the centrioles give rise to the flagella and concomitantly undergo differentiation to become the basal bodies. The Golgi apparatus goes through a period of intensive activity during mid-spermatid stages, then decreases in organization until it can no longer be detected in the late spermatid. An attempt is made to compare similarities between plant and animal spermiogenesis.


1976 ◽  
Vol 71 (2) ◽  
pp. 460-471 ◽  
Author(s):  
D Sandoz ◽  
E Biosvieux-Ulrich ◽  
C Laugier ◽  
E Brard

The hormonal control of ciliogenesis and transformation of mucous cells was studied in the oviduct (magnum) of ovariectomized quails. Estradiol benzoate induces ciliogenesis with doses varying from 10 mug/day to 100 mug/day after 6 days of treatment. With 100 mug/day, differentiation of some mucous cells is also induced as well as the formation of transitory "mixed cells" which are in the process of ciliogenesis and contain mucous granules. Associated with progesterone (1 mg/day), estradiol benzoate (10 mug/day) induces the differentiation of mucous cells and ciliated cells. The luminal epithelium of quails injected with this mixture is similar to the luminal epithelium observed in the oviduct of laying quails. With the same dose of progesterone (1 mg/day) and 20 mug/day of estradiol benzoate for 6 days, ciliogenesis is completely inhibited. All epithelial cells are secretory cells. Transformation of 50% of the mucous cells into ciliated cells is obtained by following the previous estradiol-progesterone treatment with the injection of estradiol benzoate (20 mug/day) for 3 days. Divisions of mucous cells were also observed. It is also possible to induce ciliogenesis in some mucous cells by withdrawing both hormones for 3 days. In this case, no cell divisions were observed.


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


Author(s):  
Masako Yamada ◽  
Yutaka Tanuma

Although many fine structural studies on the vertebrate liver have been reported on mammals, avians, reptiles, amphibians, teleosts and cyclostomes, there are no studies on elasmobranchii liver except one by T. Ito etal. (1962) who studied it on light microscopic level. The purpose of the present study was to as certain the ultrastructural details and cytochemical characteristics of normal elasmobranchii liver and was to compare with the other higher vertebrate ones.Seventeen Scyliorhinus torazame, one kind of elasmobranchii, were obtained from the fish stock of the Ueno Zoo aquarium, Ueno, Tokyo. The sharks weighing about 300-600g were anesthetized with MS-222 (Sigma), and the livers were fixed by perfusion fixation via the portal vein according to the procedure of Y. Saito et al. (1980) for 10 min. Then the liver tissues were immersed in the same fixative for 2 hours and postfixed with 1% OsO4-solution in 0.1 Mc acodylate buffer for one hour. In order to make sure a phagocytic activity of Kupffer cells, latex particles (0.8 μm in diameter, 0.05mg/100 g b.w.) were injected through the portal vein for one min before fixation. For preservation of lipid droplets in the cytoplasm, a series of these procedure were performed under ice cold temperature until the end of dehydration.


2020 ◽  
Author(s):  
Fumiko Matsukawa Usami ◽  
Masaki Arata ◽  
Dongbo Shi ◽  
Sanae Oka ◽  
Yoko Higuchi ◽  
...  

SummaryThe molecular mechanisms by which cilia orientation is coordinated within and between multiciliated cells (MCCs) is not fully understood. By observing the orientation of basal bodies (BB) in MCCs of mouse oviducts, here, we show that Celsr1, a planar cell polarity (PCP) factor involved in tissue polarity regulation, is dispensable for determining BB orientation in individual cells, whereas CAMSAP3, a microtubule minus-end regulator, is critical for this process but not for PCP. MCCs exhibit a characteristic BB orientation and microtubule gradient along the tissue axis, and these intracellular polarities were maintained in the cells lacking Celsr1, although the intercellular coordination of the polarities was partly disrupted. On the other hand, CAMSAP3 regulated the assembly of microtubules interconnecting BBs by localizing at the BBs, and its mutation led to disruption of intracellular coordination of BB orientation, but not affecting PCP factor localization. Thus, both Celsr1 and CAMSAP3 are responsible for BB orientation but in distinct ways; and therefore, their cooperation should be critical for generating functional multiciliated tissues.


Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 67-95
Author(s):  
Joseph Frankel ◽  
E. Marlo Nelsen ◽  
Julita Bakowska ◽  
Leslie M. Jenkins

The ciliary arrays of the oral apparatus of the ciliated protozoan Tetrahymena thermophila each have their own unique ‘pattern signature’, which varies little so long as the number of arrays remains the same. In this study, we analyse the consequence of increases in the number of these arrays (membranelles) brought about by certain mutations. In oral apparatuses of mutant cells, the addition of a membranelle is associated with specific alterations in at least one of the other membranelles. The features that are altered include the relative lengths of membranelles, the state of ciliation of basal bodies located at specific positions within these membranelles, and the spatial configurations resulting from displacement of ciliary units during late oral development. The final organization of each membranelle depends upon its relativeposition along the length of the oral apparatus. This indicates that the membranelles are not individually ‘named’ by the organism, and suggests that the unit of pattern organizationis the membranelle field as a whole. In the Discussion, we consider means for testing whether thesame underlying idea might also apply to multicellular systems, such as the vertebrate limb, in which spatially ordered differences appear to be superimposed upon a fundamental repeating pattern.


Development ◽  
1981 ◽  
Vol 63 (1) ◽  
pp. 17-27
Author(s):  
Robert L. Hammersmith ◽  
Gary W. Grimes

Cells of Oxytricha fallax possessing cytotactically inherited supernumerary dorsal bristle rows can redevelop those dorsal supernumerary rows after cystment, even though supernumerary ventral cortical structures are permanently lost through cystment. Previous work has demonstrated: (1) that cystment involves a complete dedifferentiation of all ciliary structures - all cilia, basal bodies, microtubules and fibres; and (2) that all ventral ciliary structures arise from a single ciliary primordium during excystment. These observations suggest the following conclusions. (1) The information for the redevelopment of supernumerary dorsal bristle rows during excystment is associated with some ultrastructurally unidentifiable molecular structure of the cyst cortex. (2) Cytotfrctic information for the development of cortical patterns is retained in at least two locations in the resting cyst; one location specifies the site of development of the ventral ciliature whereas the other specifies the location and pattern of the dorsal ciliature.


Sign in / Sign up

Export Citation Format

Share Document