scholarly journals Analysis of the distribution of spindle microtubules in the diatom Fragilaria.

1978 ◽  
Vol 79 (3) ◽  
pp. 737-763 ◽  
Author(s):  
D H Tippit ◽  
D Schulz ◽  
J D Pickett-Heaps

The spindle of the colonial diatom Fragilaria contains two distinct sets of spindle microtubules (MTs): (a) MTs comprising the central spindle, which is composed of two half-spindles interdigitated to form a region of "overlap"; (b) MTs which radiate laterally from the poles. The central spindles from 28 cells are reconstructed by tracking each MT of the central spindle through consecutive serial sections. Because the colonies of Fragilaria are flat ribbons of contiguous cells (clones), it is possible, by using single ribbons of cells, to compare reconstructed spindles at different mitotic stages with minimal intercellular variability. From these reconstructions we have determined: (a) the changes in distribution of MTs along the spindle during mitosis; (b) the change in the total number of MTs during mitosis; (c) the length of each MT (measured by the number of sections each traverses) at different mitotic stages; (d) the frequency of different classes of MTs (i.e., free, continuous, etc.); (e) the spatial arrangement of MTs from opposite poles in the overlap; (f) the approximate number of MTs, separate from the central spindle, which radiate from each spindle pole. From longitudinal sections of the central spindle, the lengths of the whole spindle, half-spindle, and overlap were measured from 80 cells at different mitotic stages. Numerous sources of error may create inaccuracies in these measurements; these problems are discussed. The central spindle at prophase consists predominantly of continuous MTs (pole to pole). Between late prophase and prometaphase, spindle length increases, and the spindle is transformed into two half-spindles (mainly polar MTs) interdigitated to form the overlap. At late anaphase-telophase, the overlap decreases concurrent with spindle elongation. Our interpretation is that the MTs of the central spindle slide past one another at both late prophase and late anaphase. These changes in MT distribution have the effect of elongating the spindle and are not involved in the poleward movement of the chromosomes. Some aspects of tracking spindle MTs, the interaction of MTs in the overlap, formation of the prophase spindle, and our interpretation of rearrangements of MTs, are discussed.

1993 ◽  
Vol 123 (6) ◽  
pp. 1475-1489 ◽  
Author(s):  
D N Mastronarde ◽  
K L McDonald ◽  
R Ding ◽  
J R McIntosh

Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bundling becomes much more pronounced as anaphase proceeds. While the minus ends of most kMTs are near the poles, those of the ipMTs are spread over half of the spindle length, with at least 50% lying > 1.5 microns from the poles. Longitudinal views of the ipMT bundles demonstrate a major rearrangement of their plus ends between mid- and late anaphase B. However, the minus ends of these MTs do not move appreciably farther from the spindle midplane, suggesting that sliding of these MTs contributes little to anaphase B. The minus ends of ipMTs are markedly clustered in the bundles of kMTs throughout anaphase A. These ends lie close to kMTs much more frequently than would be expected by chance, suggesting a specific interaction. As sister kinetochores separate and kMTs shorten, the minus ends of the kMTs remain associated with the spindle poles, but the minus ends of many ipMTs are released from the kMT bundles, allowing the spindle pole and the kMTs to move away from the ipMTs as the spindle elongates.


1977 ◽  
Vol 73 (3) ◽  
pp. 705-727 ◽  
Author(s):  
DH Tippit ◽  
JD Pickett-Heaps

Mitosis in Surirella is described; this organism displays a number of unusual features including an unorthodox method of chromosome attachment to the spindle, and the differentiation of an extranuclear central spindle from a large spherical organelle named the microtubule center (MC). The MC, present during interphase, breaks down at late prophase as the central spindle is formed. Later, the spindle enters the nucleus; the chromatin, in association with microtubules (MTs) from the poles, increasingly aggregates around the middle "overlap" region of the central spindle, and by metaphase completely encircles it. Throughout, MTs usually associate laterally with the chromatin. We were not able to identify kinetochore MTs with confidence at either metaphase or anaphase. Instead, at anaphase the leading point of the chromosomes is embedded in a ring of electron-dense material, named the "collar," which encircles each half spindle and extends from the chromatin to the pole. Anaphase separation of the chromosomes is achieved by at least three separate mechanisms: (a) between metaphase and late anaphase the central spindle increases in length by the addition of MT subunits; (b) at late anaphase the central spindle elongates concurrent with a reduction in the overlap; this apparently results from an MT/MT sliding mechanism; (c) each set of chromosomes moves to the poles by a thus far unknown mechanism; however, we anticipate some interaction of the collar and central spindle. At telophase, the polar complexes, (i.e., structures at the spindle pole) separate from the spindle, and later a new MC is formed near each polar complex, after which the polar complexes break down. Aspects of the complex differentiation of the MC, spindle formation, and some unusual characteristics of the diatom spindle as they relate to anaphase motion and spindle function are discussed.


1975 ◽  
Vol 64 (2) ◽  
pp. 480-491 ◽  
Author(s):  
U P Roos

Myxamebas of Polysphondylium violaceum were grown in liquid medium and processed for electron microscopy. Mitosis is characterized by a persistent nuclear envelope, ring-shaped extranuclear spindle pole bodies (SPBs), a central spindle spatially separated from the chromosomal microtubules, well-differentiated kinetochores, and dispersion of the nucleoli. SPBs originate from the division, during prophase, of an electron-opaque body associated with the interphase nucleus. The nuclear nevelope becomes fenestrated in their vicinity, allowing the build-up of the intranuclear, central spindle and chromosomal microtubules as the SPBs migrate to opposite poles. At metaphase the chromosomes are in amphitelic orientation, each sister chromatid being directly connected to the corresponding SPB by a single microtubule. During ana- and telophase the central spindle elongates, the daughter chromosomes approach the SPBs, and the nucleus constricts in the equatorial region. The cytoplasm cleaves by furrowing in late telophase, which is in other respects characterized by a re-establishment of the interphase condition. Spindle elongation and poleward movement of chromosomes are discussed in relation to hypotheses of the mechanism of mitosis.


2009 ◽  
Vol 186 (5) ◽  
pp. 739-753 ◽  
Author(s):  
Juan Carlos García-Cortés ◽  
Dannel McCollum

Cytokinesis must be initiated only after chromosomes have been segregated in anaphase and must be terminated once cleavage is completed. We show that the fission yeast protein Etd1 plays a central role in both of these processes. Etd1 activates the guanosine triphosphatase (GTPase) Spg1 to trigger signaling through the septum initiation network (SIN) pathway and onset of cytokinesis. Spg1 is activated in late anaphase when spindle elongation brings spindle pole body (SPB)–localized Spg1 into proximity with its activator Etd1 at cell tips, ensuring that cytokinesis is only initiated when the spindle is fully elongated. Spg1 is active at just one of the two SPBs during cytokinesis. When the actomyosin ring finishes constriction, the SIN triggers disappearance of Etd1 from the half of the cell with active Spg1, which then triggers Spg1 inactivation. Asymmetric activation of Spg1 is crucial for timely inactivation of the SIN. Together, these results suggest a mechanism whereby cell asymmetry is used to monitor cytoplasmic partitioning to turn off cytokinesis signaling.


2002 ◽  
Vol 115 (5) ◽  
pp. 913-922 ◽  
Author(s):  
Maria Giovanna Riparbelli ◽  
Giuliano Callaini ◽  
David M. Glover ◽  
Maria do Carmo Avides

Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster,which in asp mutants remains diminutive and so prevents migration of the pronuclei.


1991 ◽  
Vol 100 (2) ◽  
pp. 279-288 ◽  
Author(s):  
J.R. Aist ◽  
C.J. Bayles ◽  
W. Tao ◽  
M.W. Berns

The existence, structural basis and function of astral forces that are active during anaphase B in the fungus, Nectria haematococca, were revealed by experiments performed on living cells. When one of the two asters of a mitotic apparatus was damaged, the entire mitotic apparatus migrated rapidly in the direction of the opposing astral forces, showing that the force that accelerated spindle pole body separation in earlier experiments is located in the asters. When a strong solution of the antimicrotubule drug, MBC, was applied at anaphase A, tubulin immunocytochemistry showed that both astral and spindle microtubules were destroyed completely in less than a minute. As a result, separation of the spindle pole bodies during anaphase B almost stopped. By contrast, disrupting only the spindle microtubules with a laser microbeam increased the rate of spindle pole body separation more than fourfold. Taken together, these two experiments show that the astral forces are microtubule-dependent. When only one of the two or three bundles of spindle microtubules was broken at very early anaphase B, most such diminished spindles elongated at a normal rate, whereas others elongated at an increased rate. This result suggests that only a critical mass or number of spindle microtubules needs be present for the rate of spindle elongation to be fully governed, and that astral forces can accelerate the elongation of a weakened or diminished spindle.


1973 ◽  
Vol 13 (2) ◽  
pp. 511-552
Author(s):  
DONNA F. KUBAI

Changes in rostral structures and the nuclear events which occur in dividing cells of Trichonympha agilis (obtained from experimentally refaunated termites) were studied by means of electron microscopy of serial sections. It is possible to characterize 5 stages of division: Stage I. During this earliest recognizable division stage, the bilaterally symmetrical hemirostra have begun to separate and spindle microtubules appear in the intervening space. As in interphase, the kinetochore regions of chromosomes are distinguishable as fibrillar masses underlying the intact nuclear envelope; and, in individual sections, they are often seen to occur in pairs. These pairs are taken to be sister kinetochores. Stage II. The extranuclear spindle has become established between the posterior ends of well separated hemirostral tubes. Elaboration of daughter rostral structures begins and will continue through the subsequent stages of division. Kinetochores differentiate, becoming bipartite structures consisting of a fibrillar element underlain by a dense disk. The fibrillar kinetochore element is associated with the still-intact nuclear envelope which lies between kinetochores and cytoplasmic spindle microtubules. Reconstruction from serial sections shows all kinetochores to be disposed in pairs which are distributed randomly over the nuclear surface. Stage III. The fibrillar elements of kinetochores are enclosed in evaginations of the nuclear envelope, while the disk elements have come to lie in the plane of the nuclear surface. Kinetochores remain separated from the extranuclear spindle microtubules by the intact nuclear envelope. The distribution of kinetochores has changed relative to that seen in stage II: kinetochores no longer appear to be paired, and they are confined to that hemisphere of the nuclear surface closest to the spindle. Stage IV. The nuclear envelope opens at the sites of kinetochores, leaving the dense disk kinetochore element inserted in pore-like discontinuities of the nuclear envelope and the fibrillar element in the cytoplasm. Direct interaction between fibrillar kinetochore element and extranuclear spindle microtubules is, however, not yet established. Stage V. The cytoplasmically situated fibrillar elements of ‘inserted’ kinetochores are now in direct contact with spindle microtubules. As seen in reconstructions of the nucleus from serial sections, kinetochores have become segregated in 2 groups on the nuclear surface, one near each spindle pole. It is during this stage that final elaboration of rostral structures takes place. On the basis of the observed changes in kinetochore distribution which occur between stages II and III while the intact nuclear envelope prevents any direct interaction between intra-nuclear kinetochores and extranuclear spindle microtubules, it is suggested that kinetochore-membrane interaction is involved in early chromosome movement in Trichonympha agilis. Only during stage V, when direct contact between kinetochores and spindle microtubules is established, may the microtubules assume their usual role in chromosome movement.


1980 ◽  
Vol 87 (3) ◽  
pp. 531-545 ◽  
Author(s):  
D H Tippit ◽  
L Pillus ◽  
J Pickett-Heaps

The entire framework of microtubules (MTs) in the mitotic apparatus of Ochromonas danica is reconstructed (except at the spindle poles) from transverse serial sections. Eleven spindles were sectioned and used for numerical data, but only four were reconstructed: a metaphase, an early anaphase, a late anaphase, and telophase. Four major classes of MTs are observed: (a) free MTs (MTs not attached to either pole); (b) interdigitated MTs (MTs attached to one pole which laterally associate with MTs from the opposite pole); (c) polar MTs (MTs attached to one pole); (d) kinetochore MTs (kMTs). Pole-to-pole MTs are rare and may be caused by tracking errors. During anaphase, the kMTs, free MTs, and polar MTs shorten until most disappear, while interdigitated MTs lengthen. In the four reconstructed spindles, the number of MTs decreases between early anaphase and telophase from 881 to 285, while their average length increases from 1.66 to 4.98 micron. The total length of all the MTs in the spindle (placed end to end) remains at 1.42 +/- 0.04 mm between these stages. At late anaphase and telophase the spindle is comprised mainly of groups of interdigitated MTs. Such MTs from opposite poles form a region of overlap in the middle of the spindle. During spindle elongation (separation of the poles), the length of the overlap region does not decrease. These results are compatible with theories that suggest that MTs directly provide the force that elongates the spindle, either by MT polymerization alone or by MT sliding with concomitant MT polymerization.


1988 ◽  
Vol 90 (3) ◽  
pp. 501-516
Author(s):  
FAYE MURRIN ◽  
WILLIAM NEWCOMB ◽  
I. BRENT HEATH

The ultrastructure of the mitotic nuclear division cycle of the fungus Entomophaga aulicae was studied from serial sections of hyphal tips and protoplasts. The extranuclear bar-shaped nucleus- associated organelle (NAO) remained associated with the persistent nuclear envelope throughout. Prior to spindle formation, a patch of intranuclear NAO-associated chromatin detached from the nuclear envelope to yield a chromatin free zone containing fine filaments and a linear array of presumptive kinetochores. Early metaphase spindles less than 1μm in length were characterized by a ‘fused’ metaphase plate consisting of kinetochore-associated chromatin and a full complement of at least 15 kinetochore microtubules per half-spindle, while most of the chromatin was remote from the intranuclear spindle. Analysis of the distribution of antiparallel spindle microtubules indicated that polar separation and concomitant spindle elongation through metaphase were not accompanied by intermicrotubule sliding. Anaphase exhibited extensive decondensation of the large patches of condensed chromatin characteristic of all other stages. In a logarithmically growing protoplast population all nuclei contained spindle microtubules, with metaphase occupying approximately 66% of the nuclear cycle time. The calculated genome size of 4.3 pg, and average DNA content per chromosome of 0.3 pg, are extremely high for fungi.


2015 ◽  
Vol 26 (7) ◽  
pp. 1225-1237 ◽  
Author(s):  
Shinya Ohta ◽  
Laura Wood ◽  
Iyo Toramoto ◽  
Ken-Ichi Yagyu ◽  
Tatsuo Fukagawa ◽  
...  

Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.


Sign in / Sign up

Export Citation Format

Share Document