scholarly journals Isolation of stable mouse cell lines that express cell surface and secreted forms of the vesicular stomatitis virus glycoprotein.

1983 ◽  
Vol 97 (5) ◽  
pp. 1381-1388 ◽  
Author(s):  
R Z Florkiewicz ◽  
A Smith ◽  
J E Bergmann ◽  
J K Rose

We have characterized two stable transformed mouse cell lines (CG1 and CTG1) that express either the normal vesicular stomatitis virus glycoprotein (G) or a truncated form of the G protein (TG) that lacks the COOH-terminal anchor sequences and is secreted from the cells. These cell lines were obtained using a hybrid vector consisting of the transforming DNA fragment of bovine papilloma virus linked to a segment of the SV40 expression vector pSV2 containing cloned cDNA encoding either the normal or truncated form of the vesicular stomatitis virus G protein. Using indirect immunofluorescence we have found that greater than 95% of the cells in each line express the G protein(s), although the level of expression within the population is variable. The normal G protein expressed in these cells obtains its complex oligosaccharides in less than 30 min and is transported to the cell surface. In contrast, the TG protein obtains its complex oligosaccharides with a half-time of about 2.5 h. Immunofluorescence data show an apparent concentration of the TG protein in the rough endoplasmic reticulum. These data together suggest that transfer of this anchorless protein from the rough endoplasmic reticulum to the Golgi apparatus is the rate-limiting step in its secretion. We observed, in addition to normal G protein, two smaller G-related proteins produced in the CG1 cell line. We suggest that these proteins could result from aberrant splicing from sites within the G mRNA sequence to the downstream acceptor in the pSV2 vector.

1988 ◽  
Vol 8 (7) ◽  
pp. 2869-2874
Author(s):  
J L Guan ◽  
A Ruusala ◽  
H Cao ◽  
J K Rose

Alterations of the cytoplasmic domain of the vesicular stomatitis virus glycoprotein (G protein) were shown previously to affect transport of the protein from the endoplasmic reticulum, and recent studies have shown that this occurs without detectable effects on G protein folding and trimerization (R. W. Doms et al., J. Cell Biol., in press). Deletions within this domain slowed exit of the mutant proteins from the endoplasmic reticulum, and replacement of this domain with a foreign 12-amino-acid sequence blocked all transport out of the endoplasmic reticulum. To extend these studies, we determined whether such effects of cytoplasmic domain changes were transferable to other proteins. Three different assays showed that the effects of the mutations on transport of two membrane-anchored secretory proteins were the same as those observed with vesicular stomatitis virus G protein. In addition, possible effects on oligomerization were examined for both transported and nontransported forms of membrane-anchored human chorionic gonadotropin-alpha. These membrane-anchored forms, like the nonanchored human chorionic gonadotropin-alpha, had sedimentation coefficients consistent with a monomeric structure. Taken together, our results provide strong evidence that these cytoplasmic mutations affect transport by affecting interactions at or near the cytoplasmic side of the membrane.


1989 ◽  
Vol 92 (4) ◽  
pp. 633-642
Author(s):  
J.K. Burkhardt ◽  
Y. Argon

The appearance of newly synthesized glycoprotein (G) of vesicular stomatitis virus at the surface of infected BHK cells is inhibited reversibly by treatment with carbonylcyanide m-chlorophenylhydrazone (CCCP). Under the conditions used, CCCP treatment depleted the cellular ATP levels by 40–60%, consistent with inhibition of transport at energy-requiring stages. The G protein that accumulates in cells treated with CCCP is heterogeneous. Most of it is larger than the newly synthesized G protein, is acylated with palmitic acid, and is resistant to endoglycosidase H (Endo H). Most of the arrested G protein is also sensitive to digestion with neuraminidase, indicating that it has undergone at least partial sialylation. A minority of G protein accumulates under these conditions in a less-mature form, suggesting its inability to reach the mid-Golgi compartment. The oligosaccharides of this G protein are Endo-H-sensitive and seem to be partly trimmed. Whereas sialylated G protein was arrested intracellularly, fucose-labelled G protein was able to complete its transport to the cell surface, indicating that a late CCCP-sensitive step separates sialylation from fucosylation. These post-translational modifications indicate that G protein can be transported as far as the trans-Golgi in the presence of CCCP and is not merely arrested in the endoplasmic reticulum.


1988 ◽  
Vol 8 (7) ◽  
pp. 2869-2874 ◽  
Author(s):  
J L Guan ◽  
A Ruusala ◽  
H Cao ◽  
J K Rose

Alterations of the cytoplasmic domain of the vesicular stomatitis virus glycoprotein (G protein) were shown previously to affect transport of the protein from the endoplasmic reticulum, and recent studies have shown that this occurs without detectable effects on G protein folding and trimerization (R. W. Doms et al., J. Cell Biol., in press). Deletions within this domain slowed exit of the mutant proteins from the endoplasmic reticulum, and replacement of this domain with a foreign 12-amino-acid sequence blocked all transport out of the endoplasmic reticulum. To extend these studies, we determined whether such effects of cytoplasmic domain changes were transferable to other proteins. Three different assays showed that the effects of the mutations on transport of two membrane-anchored secretory proteins were the same as those observed with vesicular stomatitis virus G protein. In addition, possible effects on oligomerization were examined for both transported and nontransported forms of membrane-anchored human chorionic gonadotropin-alpha. These membrane-anchored forms, like the nonanchored human chorionic gonadotropin-alpha, had sedimentation coefficients consistent with a monomeric structure. Taken together, our results provide strong evidence that these cytoplasmic mutations affect transport by affecting interactions at or near the cytoplasmic side of the membrane.


1984 ◽  
Vol 98 (6) ◽  
pp. 2245-2249 ◽  
Author(s):  
P H Atkinson ◽  
J T Lee

Membrane bound polysomes were prepared from HeLa cells infected with vesicular stomatitis virus (VSV), after pulse labeling with [3H]mannose for various times from 15 to 90 min. Oligosaccharides on nascent chains were released from peptides by treatment with endoglycosidase H and sized by high resolution Biogel P4 chromatography. Processing on some nascent chains proceeded to the removal of all three types of alpha-linked glucose and one alpha-1,2-mannose from the Glc3Man9GlcNAc precursor showing that the enzymes responsible were not only active on nascent chains but were present in the rough endoplasmic reticulum (RER). Incubation of cells for various times in cycloheximide, where chain elongation had ceased, made no difference to the profile of oligosaccharides on the nascent chains, and trimming proceeded no further than Man8GlcNAc2Asn . Carbonyl cyanide m-chlorophenylhydrazone (CCCP), an energy inhibitor reportedly able to block the transfer of glycoproteins from the RER, increases the amount of Man8-oligosaccharides on the nascent chains and also the amount of Glc3Man9GlcNAc precursor. On completed G protein in the RER fraction from which membrane bound polysomes were prepared, processing occurred to Man6 - but not to Man5GlcNAc sized oligosaccharides in the CCCP-treated cells. By contrast, processing to Man5GlcNAc oligosaccharides was observed in unfractionated control cells.


1980 ◽  
Vol 86 (1) ◽  
pp. 162-171 ◽  
Author(s):  
J E Rothman ◽  
H Bursztyn-Pettegrew ◽  
R E Fine

The G protein of vesicular stomatitis virus is a transmembrane glycoprotein that is transported from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane via the Golgi apparatus. Pulse-chase experiments suggest that G is transported to the cell surface in two successive waves of clathrin-coated vesicles. The oligosaccharides of G protein carried in the early wave are of the "high-mannose" (G1) form, whereas the oligosaccharides in the second, later wave are of the mature "complex" (G2) form. the early wave is therefore proposed to correspond to transport of G in coated vesicles from the endoplasmic reticulum to the Golgi apparatus, and the succeeding wave to transport from the Golgi apparatus to the plasma membrane. The G1- and G2-containing coated vesicles appear to be structurally distinct, as judged by their differential precipitation by anticoated vesicle serum.


1986 ◽  
Vol 102 (6) ◽  
pp. 2147-2157 ◽  
Author(s):  
L Puddington ◽  
C E Machamer ◽  
J K Rose

Oligonucleotide-directed mutagenesis was used to construct chimeric cDNAs that encode the extracellular and transmembrane domains of the vesicular stomatitis virus glycoprotein (G) linked to the cytoplasmic domain of either the immunoglobulin mu membrane heavy chain, the hemagglutinin glycoprotein of influenza virus, or the small glycoprotein (p23) of infectious bronchitis virus. Biochemical analyses and immunofluorescence microscopy demonstrated that these hybrid genes were correctly expressed in eukaryotic cells and that the hybrid proteins were transported to the plasma membrane. The rate of transport to the Golgi complex of G protein with an immunoglobulin mu membrane cytoplasmic domain was approximately sixfold slower than G protein with its normal cytoplasmic domain. However, this rate was virtually identical to the rate of transport of micron heavy chain molecules measured in the B cell line WEHI 231. The rate of transport of G protein with a hemagglutinin cytoplasmic domain was threefold slower than wild type G protein and G protein with a p23 cytoplasmic domain, which were transported at similar rates. The combined results underscore the importance of the amino acid sequence in the cytoplasmic domain for efficient transport of G protein to the cell surface. Also, normal cytoplasmic domains from other transmembrane glycoproteins can substitute for the G protein cytoplasmic domain in transport of G protein to the plasma membrane. The method of constructing precise hybrid proteins described here will be useful in defining functions of specific domains of viral and cellular integral membrane proteins.


1985 ◽  
Vol 5 (11) ◽  
pp. 3074-3083 ◽  
Author(s):  
C E Machamer ◽  
R Z Florkiewicz ◽  
J K Rose

We investigated the role of glycosylation in intracellular transport and cell surface expression of the vesicular stomatitis virus glycoprotein (G) in cells expressing G protein from cloned cDNA. The individual contributions of the two asparagine-linked glycans of G protein to cell surface expression were assessed by site-directed mutagenesis of the coding sequence to eliminate one or the other or both of the glycosylation sites. One oligosaccharide at either position was sufficient for cell surface expression of G protein in transfected cells, and the rates of oligosaccharide processing were similar to the rate observed for wild-type protein. However, the nonglycosylated G protein synthesized when both glycosylation sites were eliminated did not reach the cell surface. This protein did appear to reach a Golgi-like region, as determined by indirect immunofluorescence microscopy, however, and was modified with palmitic acid. It was also apparently not subject to increased proteolytic breakdown.


Sign in / Sign up

Export Citation Format

Share Document