scholarly journals CELL TO CELL INTERACTION IN THE IMMUNE RESPONSE

1970 ◽  
Vol 131 (4) ◽  
pp. 675-699 ◽  
Author(s):  
J. F. A. P. Miller ◽  
G. F. Mitchell

Collaboration between thymus-derived lymphocytes, and nonthymus-derived antibody-forming cell precursors occurs during the immune response of mice to sheep erythrocytes (SRBC). The aim of the experiments reported here was to attempt to induce tolerance in each of the two cell populations to determine which cell type dictates the specificity of the response. Adult mice were rendered specifically tolerant to SRBC by treatment with one large dose of SRBC followed by cyclophosphamide. Attempts to restore to normal their anti-SRBC response by injecting lymphoid cells from various sources were unsuccessful. A slight increase in the response was, however, obtained in recipients of thymus or thoracic duct lymphocytes and a more substantial increase in recipients of spleen cells or of a mixture of thymus or thoracic duct cells and normal marrow or spleen cells from thymectomized donors. Thymus cells from tolerant mice were as effective as thymus cells from normal or cyclophosphamide-treated controls in enabling neonatally thymectomized recipients to respond to SRBC and in collaborating with normal marrow cells to allow a response to SRBC in irradiated mice. Tolerance was thus not achieved at the level of thelymphocyte population within the thymus, perhaps because of insufficient penetration of the thymus by the antigens concerned. By contrast, thoracic duct lymphocytes from tolerant mice failed to restore to normal the response of neonatally thymectomized recipients to SRBC. Tolerance is thus a property that can be linked specifically to thymus-derived cells as they exist in the mobile pool of recirculating lymphocytes outside the thymus. Thymus-derived cells are thus considered capable of recognizing and specifically reacting with antigenic determinants. Marrow cells from tolerant mice were as effective as marrow cells from cyclophosphamide-treated or normal controls in collaborating with normal thymus cells to allow a response to SRBC in irradiated recipients. When a mixture of thymus or thoracic duct cells and lymph node cells was given to irradiated mice, the response to SRBC was essentially the same whether the lymph node cells were derived from tolerant donors or from thymectomized irradiated, marrow-protected donors. Attempts to induce tolerance to SRBC in adult thymectomized, irradiated mice 3–4 wk after marrow protection, by treatment with SRBC and cyclophosphamide, were unsuccessful: after injection of thoracic duct cells, a vigorous response to SRBC occurred. The magnitude of the response was the same whether or not thymus cells had been given prior to the tolerization regime. The various experimental designs have thus failed to demonstrate specific tolerance in the nonthymus-derived lymphocyte population. Several alternative possibilities were discussed. Perhaps such a population does not contain cells capable of dictating the specificity of the response. This was considered unlikely. Alternatively, tolerance may have been achieved but soon masked by a rapid, thymus-independent, differentiation of marrow-derived lymphoid stem cells. On the other hand, tolerance may not have occurred simply because the induction of tolerance, like the induction of antibody formation, requires the collaboration of thymus-derived cells. Finally, tolerance in the nonthymus-derived cell population may never be achieved because the SRBC-cyclophosphamide regime specifically eliminates thymus-derived cells leaving the antibody-forming cell precursors intact but unable to react with antigen as there are no thymus-derived cells with which to interact.

1972 ◽  
Vol 135 (5) ◽  
pp. 1059-1070 ◽  
Author(s):  
Robert E. Tigelaar ◽  
Richard Asofsky

A mortality assay was used to quantitate graft-versus-host (GVH) reactions in sublethally irradiated (400 R) neonatal (C57BL/6 x BALB/c)F1 recipients of BALB/c lymphoid cells from various tissues. The probit of the 35 day cumulative per cent of mortality was a linear function of the logarithm of the cell inoculum for any tissue; reactivities of different tissues fell on a series of parallel lines. Peripheral blood leukocytes (PBL), the most active cells, were about 30 times as active as thymocytes, the least active cells studied; femoral lymph node cells and spleen cells were about 23 and 8 times as reactive as thymocytes, respectively. The average survival time of recipients of thymocytes who eventually died was nearly a week longer than that of recipients of comparably lethal numbers of PBL, lymph node, or spleen cells. Mixtures of PBL and thymocytes gave levels of 35 day mortality significantly greater than those expected if the reactivities of the mixture had been merely the sum of the reactivities of the components measured separately, thereby confirming in any assay independent of host splenomegaly the synergistic interaction of thymocytes and PBL in the GVH reaction. Both populations of cells in the mixture had to be allogeneic to the host in order to observe this synergy. The kinetics of cumulative mortality observed for mixtures of PBL and thymocytes were indistinguishable from those seen with thymocytes alone, indicating activation of the latter cell type. Finally, comparison of the relative abilities of different cell populations to cause splenomegaly on the one hand and lethal runting on the other has raised the possibility that expression of different effector functions of cell-mediated immune reactions may in fact be initiated by distinct cells.


1968 ◽  
Vol 128 (4) ◽  
pp. 855-874 ◽  
Author(s):  
W. J. Martin ◽  
J. F. A. P. Miller

In this series of papers it has been shown that the immune response of mice to sheep erythrocytes requires the participation of two classes of lymphoid cells. Thymus-derived cells initially react with antigen and then interact with another class of cells, the antibody-forming cell precursors, to cause their differentiation to antibody-forming cells. Antilymphocyte globulin depressed the ability of mice to respond to sheep erythrocytes. This effect was more marked when the antigen was injected intraperitoneally than intravenously, and occurred only when the antilymphocyte globulin was given before or simultaneously with antigen. Injection of thymus cells restored to near normal the ability to respond to an intravenous injection of sheep erythrocytes. Spleen cells from antilymphocyte globulin-treated mice gave a weak adoptive immune response in irradiated recipients. The addition of thymus cells however enabled a response similar to that given by normal spleen cells. When thymectomized irradiated recipients were used, normal spleen cells continued to give a higher response to a challenge of sheep erythrocytes at 2 and 4 wk postirradiation than did spleen cells from ALG-treated donors. This result is more consistent with the notion that thymus-derived target cells are eliminated, rather than temporarily inactivated, by antilymphocyte globulin. These findings suggest that, in vivo, antilymphocyte globulin acts selectively on the thymus-derived antigen-reactive cells.


1974 ◽  
Vol 139 (4) ◽  
pp. 943-956 ◽  
Author(s):  
David A. Lawrence ◽  
William O. Weigle

The ability of meta-nitrobenzenediazonium fluoborate (m-NBDF)-labeled thymus and spleen (S) cells to transfer immunity to 2,4-dinitrophenyl (DNP) into irradiated syngeneic recipients was investigated. There was a significant increase in the number of anti-DNP plaque-forming cells (PFC) when m-NBDF-labeled thymus cells and normal spleen cells, or normal thymus cells and m-NBDF-labeled spleen cells were transferred, but not when both thymus- and S-cell populations were labeled and injected together into irradiated recipients. The ability of these cell populations to cooperate and enhance the in vivo immune response to DNP is discussed. The T cells seem to be actively involved in the development of this response; they participate beyond the mere role of carrying and presenting antigen to the B cells. It is suggested that cell to cell contact between T and B cells may be an important factor in the elicitation of an immune response. In addition, the cellular interaction is affected by irradiating the thymus cell preparation and the initiating interaction required for antibody synthesis probably occurs within 48 h after injecting the cell populations into the syngeneic irradiated recipients.


1965 ◽  
Vol 122 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Erna Möller

The ability of specifically immunized lymphoid cells to kill H-2 incompatible target tumor cells in tissue culture was shown to depend on the source of the lymphoid tissue (spleen versus lymph nodes). Marked cytotoxic effects were obtained with regional lymph node cells 7 to 10 days after primary immunization, whereas spleen cells from the same animals had little or no effect. Hyperimmunization did not decrease the cytotoxic efficiency of lymph node cells. Experiments were performed to test the possibility that the weak effect of spleen cells is a result of humoral antibody production, antagonizing the cell-bound immunity. Humoral antibodies were cytotoxic in vitro in the presence of complement only. Their effect was manifested after 2 hours, whereas immune lymph node cells did not require complement and cytotoxicity was not expressed until 24 to 48 hours' incubation. Tumor cell cultures treated with specific humoral antibodies in the absence of complement became resistant to the cytotoxic effect of subsequently added immune lymph node cells, while no such protection was seen when normal serum was added. Thus, humoral antibodies led to an "efferent" inhibition of cell-bound immunity in vitro, in analogy with previous results in vivo.


1969 ◽  
Vol 130 (6) ◽  
pp. 1243-1261 ◽  
Author(s):  
G. M. Shearer ◽  
G. Cudkowicz

Marrow cells and thymocytes of unprimed donor mice were transplanted separately into X-irradiated syngeneic hosts, with or without sheep erythrocytes (SRBC). Antigen-dependent changes in number or function of potentially immunocompetent cells were assessed by retransplantation of thymus-derived cells with fresh bone marrow cells and SRBC; of marrow-derived cells with fresh thymocytes and SRBC; and of thymus-derived with marrow-derived cells and SRBC. Plaque-forming cells (PFC) of the direct (IgM) and indirect (IgG) classes were enumerated in spleens of secondary host mice at the time of peak responses. By using this two-step design, it was shown (a) that thymus, but not bone marrow, contained antigen-reactive cells (ARC) capable of initiating the immune response to SRBC (first step), and (b) that the same antigen complex that activated thymic ARC was required for the subsequent interaction between thymus-derived and marrow cells and/or for PFC production (second step). Thymic ARC separated from marrow cells but exposed to SRBC proliferated and generated specific inducer cells. These were the cells that interacted with marrow precursors of PFC to form the elementary units for plaque responses to SRBC, i.e. the class- and specificity-restricted antigen-sensitive units. It was estimated that each ARC generated 80–800 inducer cells in 4 days by way of a minimum of 6–10 cell divisions. On the basis of the available evidence, a simple model was outlined for cellular events in the immune response to SRBC.


1971 ◽  
Vol 134 (5) ◽  
pp. 1144-1154 ◽  
Author(s):  
David G. Tubergen ◽  
Joseph D. Feldman

Adoptive transfer experiments were performed to define the immunological role of thymus and bone marrow cells in the induction of delayed hypersensitivity (DH). The results indicated the following, (a) Bone marrow from immune donors contained cells capable of being stimulated by antigen to initiate the expression of DH. (b) Bone marrow from nonimmune or tolerant donors contained cells that were needed to complete the expression of DH after the infusion of immune lymph node cells. (c) Normal bone marrow and thymus cells cooperated in the irradiated recipient to induce the most vigorous skin reactions to specific antigen; these reactions were seen only when the recipients were stimulated by antigen. Either cell type alone was ineffective. (d) In the presence of tolerant bone marrow cells, thymus cells from immune donors gave a more vigorous response than did thymus cells from normal or tolerant donors. (e) There was suggestive evidence that thymus cells were the source of trigger elements that initiated DH. (f) Antigen in the irradiated recipient was necessary to induce DH after infusion of bone marrow cells alone, or bone marrow and thymus cells together.


1964 ◽  
Vol 120 (4) ◽  
pp. 547-560 ◽  
Author(s):  
Carl M. Pearson ◽  
Fae D. Wood

All adjuvant-induced arthritis has been passively transferred in a highly inbred strain of rats by transfer of viable lymph node or spleen cells, but not thymus cells, to normal recipients. After an interval averaging 4.3 days recipients developed arthritis, whereas animals actively sensitized with adjuvant never developed disease before the 9th day (average 11.3 days). The transferred disease had all of the gross and pathological characteristics of primary disease, except for a lesser severity. Control studies using non-viable cells either of lymphoidal or other tissue origin were always negative. It is concluded that adjuvant arthritis is the result of an immunologic reaction which is perhaps similar to delayed hypersensitivity. The antigen in this reaction so far remains obscure.


Blood ◽  
1963 ◽  
Vol 22 (1) ◽  
pp. 44-52 ◽  
Author(s):  
GEORGES MATHÉ ◽  
JEAN-LOUIS AMIEL ◽  
LÉON SCHWARZENBERG ◽  
ANNE-MARIE MERY ◽  
F. Lapeyraque

Abstract Preservation of a graft of lymph node cells or semi-allogenic bone marrow cells at 37 C. in Tyrode’s solution for 2 hours, which reduces the percentage of cells not permeable to eosin by half, has a statistically significant reducing effect on the frequency of acute or chronic secondary syndromes which occur in irradiated recipients. Preservation at 18 C. for 6 hours, which in the same way increases the percentage of cells permeable to eosin, does not have the same effect. These two methods of preserving bone marrow cells do not appreciably reduce the myeloid-restoring capacity of compatible or incompatible irradiated recipients. Application of these results to bone marrow grafting in clinical medicine is discussed.


Sign in / Sign up

Export Citation Format

Share Document