scholarly journals ANTAGONISTIC EFFECTS OF HUMORAL ISOANTIBODIES ON THE IN VITRO CYTOTOXICITY OF IMMUNE LYMPHOID CELLS

1965 ◽  
Vol 122 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Erna Möller

The ability of specifically immunized lymphoid cells to kill H-2 incompatible target tumor cells in tissue culture was shown to depend on the source of the lymphoid tissue (spleen versus lymph nodes). Marked cytotoxic effects were obtained with regional lymph node cells 7 to 10 days after primary immunization, whereas spleen cells from the same animals had little or no effect. Hyperimmunization did not decrease the cytotoxic efficiency of lymph node cells. Experiments were performed to test the possibility that the weak effect of spleen cells is a result of humoral antibody production, antagonizing the cell-bound immunity. Humoral antibodies were cytotoxic in vitro in the presence of complement only. Their effect was manifested after 2 hours, whereas immune lymph node cells did not require complement and cytotoxicity was not expressed until 24 to 48 hours' incubation. Tumor cell cultures treated with specific humoral antibodies in the absence of complement became resistant to the cytotoxic effect of subsequently added immune lymph node cells, while no such protection was seen when normal serum was added. Thus, humoral antibodies led to an "efferent" inhibition of cell-bound immunity in vitro, in analogy with previous results in vivo.

Blood ◽  
1973 ◽  
Vol 41 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Alan Winkelstein

Abstract A course of cyclophosphamide administered to guinea pigs after immunization with mycobacteria led to a transient inhibition of cutaneous hypersensitivity to tuberculin protein. This treatment resulted in generalized depletion of lymphoid cells, including lymphopenia, and a substantial reduction in the number of macrophages found in induced peritoneal exudates. Results of in vivo cell transfer studies indicated that cyclophosphamide-treated recipients were rendered transiently unresponsive to purified tuberculin protein (PPD). However, sensitized lymph node cells from drug-treated donors were capable of transferring immunity to normal recipients. In vitro tests of cellular immunity with lymph node cells from drug-treated animals yielded discordant results. The proliferative response to both PHA and PPD was significantly impaired. However, these lymphoid cells functioned normally in assays for migration inhibition factor (MIF). Thus, these data suggest that cyclophosphamide can limit proliferation without impairing intermitotic functions of sensitized lymphocytes, such as the release of MIF. Results of this study suggest that cyclophosphamide does not impair development of a population of specifically sensitized T-type lymphocytes. However, several components of the expression phase are affected; the resultant anergy is probably due to a summation of effects on lymphocytes and macrophages.


1974 ◽  
Vol 140 (6) ◽  
pp. 1588-1603 ◽  
Author(s):  
Susan Solliday Rich ◽  
Robert R. Rich

Regulatory effects of alloantigen-activated thymus-derived lymphocytes in mixed lymphocyte reactions have been demonstrated. Mice were injected into foot pads with allogeneic spleen cells; 4 days following sensitization spleen or regional lymph node cells from these animals were treated with mitomycin C and incorporated into MLR as regulator populations syngeneic to the responder cell type. Activated spleen cells suppressed MLR responses 60–90% whereas activated lymph node cells from the same animals enhanced MLR responses. Suppression by activated spleen cells was not due to cytotoxic effects nor to altered kinetics of the proliferative response. Studies of splenic suppressor cell generation in vivo revealed peak activity four days after alloantigen stimulation with no activity demonstrable at 7 days or at later times. Suppressor cell activity was abrogated by treatment with anti-θC3H serum and complement, and was not alloantigen specific.


1974 ◽  
Vol 139 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Patricia G. Spear ◽  
Gerald M. Edelman

In spite of the prenatal appearance of immunoglobulin-bearing lymphocytes and θ-positive lymphocytes in the spleens of Swiss-L mice, these mice are not able to produce detectable levels of humoral antibodies in response to antigen until after 1 wk of age. Adult levels of response are not achieved until 4–8 wk of age. In the presence of bacterial lipopolysaccharides, which can substitute for or enhance T-cell function, the B cells from young Swiss-L mice were found to be indistinguishable in function from adult B cells, both with respect to the numbers of plaque-forming cells (PFC) produced in vitro in response to antigen and with respect to the kinetics of PFC induction. The spleen cells from young Swiss-L mice are significantly less sensitive than adult spleen cells, however, to stimulation by the T cell mitogens, concanavalin A (Con A) and phytohemagglutinin (PHA). Very few Con A-responsive cells could be detected at birth but the numbers increased sharply with age until 3 wk after birth. On the other hand, PHA-responsive cells could not be detected in the spleen until about 3 wk of age. The latter cells were found to respond also to Con A, but at a lower dose (1 µg/ml) than that required for the bulk of the Con A-responsive cells (3 µg/ml). The cells that respond both to PHA and to Con A appear in the spleen at about the time that Swiss-L mice acquire the ability to produce humoral antibodies, and these cells can be depleted from the spleen by the in vivo administration of antithymocyte serum. The development of humoral immune responses in these mice therefore appears to be correlated with the appearance of recirculating T lymphocytes that are responsive both to PHA and to Con A.


1996 ◽  
Vol 16 (3) ◽  
pp. 1169-1178 ◽  
Author(s):  
D W White ◽  
G A Pitoc ◽  
T D Gilmore

The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.


1972 ◽  
Vol 135 (5) ◽  
pp. 1059-1070 ◽  
Author(s):  
Robert E. Tigelaar ◽  
Richard Asofsky

A mortality assay was used to quantitate graft-versus-host (GVH) reactions in sublethally irradiated (400 R) neonatal (C57BL/6 x BALB/c)F1 recipients of BALB/c lymphoid cells from various tissues. The probit of the 35 day cumulative per cent of mortality was a linear function of the logarithm of the cell inoculum for any tissue; reactivities of different tissues fell on a series of parallel lines. Peripheral blood leukocytes (PBL), the most active cells, were about 30 times as active as thymocytes, the least active cells studied; femoral lymph node cells and spleen cells were about 23 and 8 times as reactive as thymocytes, respectively. The average survival time of recipients of thymocytes who eventually died was nearly a week longer than that of recipients of comparably lethal numbers of PBL, lymph node, or spleen cells. Mixtures of PBL and thymocytes gave levels of 35 day mortality significantly greater than those expected if the reactivities of the mixture had been merely the sum of the reactivities of the components measured separately, thereby confirming in any assay independent of host splenomegaly the synergistic interaction of thymocytes and PBL in the GVH reaction. Both populations of cells in the mixture had to be allogeneic to the host in order to observe this synergy. The kinetics of cumulative mortality observed for mixtures of PBL and thymocytes were indistinguishable from those seen with thymocytes alone, indicating activation of the latter cell type. Finally, comparison of the relative abilities of different cell populations to cause splenomegaly on the one hand and lethal runting on the other has raised the possibility that expression of different effector functions of cell-mediated immune reactions may in fact be initiated by distinct cells.


1984 ◽  
Vol 105 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Joanne Scott ◽  
Peter G. MacKay ◽  
Åke Lernmark

Abstract. Lymphocytes from patients with insulin-dependent diabetes have been shown to be sensitized to pancreatic tissue antigens. Mice immunized with homologous pancreatic islets have been found to develop glucose intolerance and insulitis. Since lymphocytes may be involved in diabetogenesis, we wished to determine if lymph node cells from islet-immunized mice can recognize and respond to islet cells in vitro. A.TL female mice were immunized with an emulsion of BALB/c islet homogenate and complete Freund's adjuvant (CFA); sham-treated A.TL mice were injected with adjuvant and water. Mice were sacrificed 7–8 days later and the draining lymph nodes were removed. The lymph node cells were co-cultured with freshly prepared irradiated BALB/c islet cell, which served as stimulator cells. The co-cultures were incubated for 24–26 h at 37°C, followed by a 16 h [3H]thymidine (TdR) pulse. A significant proliferation of lymph node cells from islet-primed mice was induced during the in vitro stimulation with irradiated islet cells when compared with lymph node cells from sham-treated mice (P < 0.001). The response may be islet-cell-specific, since irradiated lymph node cells from BALB/c mice failed to proliferative response under the same culture conditions (P > 0.80).


1971 ◽  
Vol 133 (4) ◽  
pp. 821-833 ◽  
Author(s):  
Irun R. Cohen ◽  
Amiela Globerson ◽  
Michael Feldman

This paper reports a model system of cellular immunity in which allosensitization of mouse spleen cells is induced in vitro. Allosensitization was achieved by culturing spleen cells upon monolayers of allogeneic fibroblasts. The ability of the spleen cells to inhibit the growth of tumor allografts in vivo served as a functional assay of sensitization. We found that unsensitized spleen cells or spleen cells sensitized against unrelated fibroblast antigens had no inhibitory effect on the growth of allogeneic fibrosarcoma cells when they were injected together into irradiated recipients. In contrast, spleen cells which were specifically allosensitized in vitro were found to be highly effective in inhibiting the growth of an equal number of allogeneic tumor cells. Several times more spleen cells from mice sensitized in vivo were required to produce a similar immune effect. This confirms the findings of previous studies which indicate that sensitization in cell culture can promote the selection of specifically sensitized lymphocytes. Preincubating sensitizing fibroblasts with allo-antisera blocked the allosensitization of spleen cells. This suggests that antibodies binding to fibroblasts may inhibit the induction of sensitization by competing with lymphocytes for antigenic sites. Mouse spleen cells which were able to recognize and reject tumor allografts in vivo were unable to cause lysis of target fibroblasts in vitro. Such fibroblasts, however, were susceptible to lysis by rat lymphoid cells sensitized by a similar in vitro method. These findings indicate that the conditions required for lymphocyte-mediated lysis of target cells may not be directly related to the processes of antigen recognition and allograft rejection in vivo.


1998 ◽  
Vol 66 (9) ◽  
pp. 4537-4540 ◽  
Author(s):  
Frederick P. Heinzel ◽  
Ronald M. Rerko ◽  
Andrea M. Hujer ◽  
Richard A. Maier

ABSTRACT Lymph node cells of BALB/c mice with progressive leishmaniasis produced sixfold more interleukin-2 (IL-2) in culture than those of healing C57BL/6 mice. IL-2 synthesis also increased in C57BL/6 mice made susceptible by IL-12 or gamma interferon deficiency. However, IL-2 mRNA levels in vivo did not reflect IL-2 production in vitro. Because IL-2 contributes to the pathogenesis of progressive leishmaniasis, the functional significance of these findings should be further explored.


1970 ◽  
Vol 131 (4) ◽  
pp. 675-699 ◽  
Author(s):  
J. F. A. P. Miller ◽  
G. F. Mitchell

Collaboration between thymus-derived lymphocytes, and nonthymus-derived antibody-forming cell precursors occurs during the immune response of mice to sheep erythrocytes (SRBC). The aim of the experiments reported here was to attempt to induce tolerance in each of the two cell populations to determine which cell type dictates the specificity of the response. Adult mice were rendered specifically tolerant to SRBC by treatment with one large dose of SRBC followed by cyclophosphamide. Attempts to restore to normal their anti-SRBC response by injecting lymphoid cells from various sources were unsuccessful. A slight increase in the response was, however, obtained in recipients of thymus or thoracic duct lymphocytes and a more substantial increase in recipients of spleen cells or of a mixture of thymus or thoracic duct cells and normal marrow or spleen cells from thymectomized donors. Thymus cells from tolerant mice were as effective as thymus cells from normal or cyclophosphamide-treated controls in enabling neonatally thymectomized recipients to respond to SRBC and in collaborating with normal marrow cells to allow a response to SRBC in irradiated mice. Tolerance was thus not achieved at the level of thelymphocyte population within the thymus, perhaps because of insufficient penetration of the thymus by the antigens concerned. By contrast, thoracic duct lymphocytes from tolerant mice failed to restore to normal the response of neonatally thymectomized recipients to SRBC. Tolerance is thus a property that can be linked specifically to thymus-derived cells as they exist in the mobile pool of recirculating lymphocytes outside the thymus. Thymus-derived cells are thus considered capable of recognizing and specifically reacting with antigenic determinants. Marrow cells from tolerant mice were as effective as marrow cells from cyclophosphamide-treated or normal controls in collaborating with normal thymus cells to allow a response to SRBC in irradiated recipients. When a mixture of thymus or thoracic duct cells and lymph node cells was given to irradiated mice, the response to SRBC was essentially the same whether the lymph node cells were derived from tolerant donors or from thymectomized irradiated, marrow-protected donors. Attempts to induce tolerance to SRBC in adult thymectomized, irradiated mice 3–4 wk after marrow protection, by treatment with SRBC and cyclophosphamide, were unsuccessful: after injection of thoracic duct cells, a vigorous response to SRBC occurred. The magnitude of the response was the same whether or not thymus cells had been given prior to the tolerization regime. The various experimental designs have thus failed to demonstrate specific tolerance in the nonthymus-derived lymphocyte population. Several alternative possibilities were discussed. Perhaps such a population does not contain cells capable of dictating the specificity of the response. This was considered unlikely. Alternatively, tolerance may have been achieved but soon masked by a rapid, thymus-independent, differentiation of marrow-derived lymphoid stem cells. On the other hand, tolerance may not have occurred simply because the induction of tolerance, like the induction of antibody formation, requires the collaboration of thymus-derived cells. Finally, tolerance in the nonthymus-derived cell population may never be achieved because the SRBC-cyclophosphamide regime specifically eliminates thymus-derived cells leaving the antibody-forming cell precursors intact but unable to react with antigen as there are no thymus-derived cells with which to interact.


1990 ◽  
Vol 172 (1) ◽  
pp. 105-113 ◽  
Author(s):  
S Kitagawa ◽  
S Sato ◽  
S Hori ◽  
T Hamaoka ◽  
H Fujiwara

The intravenous sensitization of C57BL/6 (B6) mice with class I H-2-disparate B6-C-H-2bm1 (bm1) spleen cells resulted in the abrogation of CD8+ T cell-mediated anti-bm1 (proliferative and interleukin 2-producing) T helper (Th) cell activities. In vitro stimulation of lymphoid cells from these mice with bm1 cells, however, generated a reduced, but appreciable, anti-bm1 cytotoxic T lymphocyte (CTL) response. Moreover, the anti-bm1 CTL response, upon stimulation with [bm1 x B6-C-H-2bm12 (bm12)]F1 spleen cells, was enhanced when compared with the response induced upon stimulation with bm1 cells. These in vitro results were reflected on in vivo graft rejection responses; bm1 skin grafts engrafted in the bm1-presensitized B6 mice exhibited prolonged survival, whereas (bm1 x bm12)F1 grafts placed collateral to bm1 grafts (dual engrafted mice) inhibited the tolerance to bm1. In the B6 mice 1-2 d after rejecting the bm1 grafts, anti-bm1 Th activities remained marginal, whereas potent anti-bm1 CTL responses were found to be generated from their spleen cells. Administration in vivo of anti-CD4 antibody into bm1-presensitized, dual graft-engrafted mice prolonged bm1 graft survival and interfered with enhanced induction of anti-bm1 CTL activity. These results indicate that anti-class I alloantigen (bm1) tolerance as induced by intravenous presensitization with the relevant antigens is not ascribed to the elimination of CD8+ CTL precursors, but to the specific inactivation of CD8+ Th cells, whose function can be bypassed by activating third-party Th cells.


Sign in / Sign up

Export Citation Format

Share Document