scholarly journals Allotype-specific analysis of anti-(TYR,GLU)-ALA-LYS antibodies produced by Ir-1A high and low responder chimeric mice

1977 ◽  
Vol 146 (6) ◽  
pp. 1815-1820 ◽  
Author(s):  
JL Press ◽  
HO McDevitt

Katz et al. (1) have demonstrated a restriction in lymphoid cell interaction when the antigen used is under immune response (Ir) gene control. T cells from (low responder x high responder) F(1) mice primed to the terpolymer L-glutamic acid, L-lysine, L-tyrosine (GLT) can collaborate with 2,4-dinitrophenyl (DNP)-primed B cells from the Ir-GLT high responder but not low responder strain in response to DNP-GLT (1). In contrast are the studies of Bechtol et al. and Bechtol and McDevitt (2,3), who examined the antibody responses of tetraparental mice immunized with the synthetic polypeptide poly-L(Tyr,Glu)-poly D,L-Ala- poly-L-Lys ((T,G)-A-L), an antigen under Ir-1A genetic control. Several tetraparental mice produced anti(T-,G)-A-L antibody of low responder strain immunoglobulin (Ig) allotype (2,3). These results indicated that he Ir-1A gene was not expressed in B cells and implied that interactions among genetically dissimilar cell populations could occur when tolerance existed to H-2 antigenic differences. Recent studies with bone marrow cell chimeric mice have shown that chimeric T cells can interact with H-2 histoincompatible B cells in response to antigens not under Ir gene control (4-6). To clarify whether lymphoid cell chimerism, with presumed tolerance to H-2 incompatibility, would permit effective cell interactions in response to antigens under Ir gene control, bone marrow cell chimeric mice were prepared by using strains differing both for Ig allotype and for high versus low responsiveness to (T,G)-A-L. An antigen-specific and allotype- specific antibody assay was used to discriminate the responses produced by high and low responder strain B cells in these chimeras. The results suggest that lymphoid cell chimerism per se is not sufficient to obviate Ir gene-mediated restriction in cell interaction.

1978 ◽  
Vol 147 (6) ◽  
pp. 1849-1853 ◽  
Author(s):  
CM Warner ◽  
TJ Berntson ◽  
L Eakley ◽  
JL McIvor ◽  
RC Newton

The question of whether or not lymphoid cells can cooperate across a histocompatibility difference barrier has been studied in several laboratories. Using an adoptive transfer system, Katz et al. (1) first showed that T cells from (low responder × high responder) F(1) mice, primed to the terpolymer L-glutamic acid, L-lysine, L-tyrosine (GLT), could collaborate with 2,4-dinitrophenyl (DNP)-primed B cells from a high responder, but not a low responder strain, in response to DNP-GLT. The response to GLT is under H- 2-1inked Ir gene control. In contrast, studies with mouse bone marrow chimeras have shown that T cells can interact with H-2-histoincompatible B cells in response to antigens not under Ir gene control (2-4). Another type of chimera, the allophenic mouse, has been used to study possible histoincompatible cell interactions to a number of antigens, including DNP-L- glutamic acid, L-lysine, L-alanine; L-glutamic acid, L-alanine, L-tyrosine; L-glutamic acid, L-lysine, L-phenylalanine; and poly-L (Tyr, Glu)-poly D,L- Ala-poly-L-Lys[T,G)-A-L] (5-9). The response to each of these antigens is under H-2-1inked Ir gene control. It was initially reported (8, 9) that in allophenic mice containing both high and low responder cells, the antibody to (T,G)-A-L was of both the high and low responder allotype. This was interpreted to mean that high responder T cells had cooperated with low responder B cells across a histocompatibility difference barrier in the environment of the allophenic mice. However, Press and McDevitt (10) have recently reported that additional and more accurate analyses of these allophenic mouse sera failed to detect any anti-(T,G)-A-L antibody of the low responder allotype. Moreover, in an experiment using bone marrow chimeras, there was no low responder allotype antibody produced in response to (T,G)-A- L(10). The present study was undertaken to test the immune response of allophonic mice to an antigen, DNP-bovine gamma globulin (DNP(56)BGG), known to be controlled by genes both inside and outside the H-2 complex (11, 12).(1) When high and low responder cells to DNP(56)BGG are present in allophenic mice, only antibody of the high responder allotype is produced. The results suggest that cell cooperation in allophenic mice cannot occur across a histocompatibility difference barrier in response to an antigen whose genetic control is at least partially within the H-2 complex.


1982 ◽  
Vol 156 (5) ◽  
pp. 1486-1501 ◽  
Author(s):  
Y Kohno ◽  
J A Berzofsky

We studied the genetic restrictions on the interaction between T cells, B cells, and antigen-presenting cells (APC) involved in the H-2-linked Ir gene control of the in vitro secondary antibody response to sperm whale myoglobin (Mb) in mice. The B cells in this study were specific for Mb itself, rather than for a hapten unrelated to the Ir gene control, as in many previous studies. Low responder mice immunized in vivo with Mb bound to an immunogenic carrier, fowl gamma globulin (F gamma G), produced B cells competent to secrete anti-Mb antibodies in vitro if they received F gamma G-specific T cell help. However, (high-responder X low responder) F1 T cells from Mb-immune mice did not help these primed low responder (H-2k or H-2b) B cells in vitro, even in the presence of various numbers of F1 APC that were demonstrated to be component to reconstitute the response of spleen cells depleted by APC. Similar results were obtained with B6 leads to B6D2F1 radiation bone marrow chimeras. Genotypic low responder (H-2b) T cells from these mice helped Mb-primed B6D2F1B cells plus APC, but did not help syngeneic chimeric H-2b B cells, even in the presence of F1 APC. In contrast, we could not detect any Ir restriction on APC function during these in vitro secondary responses. Moreover, in the preceding paper, we found that low responder mice neonatally tolerized to higher responder H-2 had competent Mb-specific helper T cells capable of helping high responder but not low responder B cells and APC. Therefore, although function Mb-specific T cells and B cells both exist in low responder mice, the Ir gene defect is a manifestation of the failure of syngeneic collaboration between these two cell types. This genetic restriction on the interaction between T cells and B cells is consistent with the additional new finding that Lyb-5-negative B cells are a major participant in ths vitro secondary response because it is this Lyb-5-negative subpopulation of B cells that have recently been shown to require genetically restricted help. The Ir gene defect behaves operationally as a failure of low responder B cells to receive help from any source of Mb-specific T cells either high responder, low responder, or F1. The possible additional role of T cell-APC interactions, either during primary immunization in vivo or in the secondary culture is discussed.


1976 ◽  
Vol 144 (6) ◽  
pp. 1707-1711 ◽  
Author(s):  
H Waldmann ◽  
H Pope ◽  
A J Munro

H-2d spleen cells derived from either tetraparental or semiallogeneic radiation bone marrow chimeras can be primed to antigen within H-2d recipients to generate helper T cells capable of cooperating in a secondary response with equal efficiency with H-2d or H-2k B cells. Thus it would seem that the cooperative act between T and B cells does not require that the T cell interacts with its target B cells by either cell interaction genes or via an altered self mechanism involving both antigen and the target B-cell I-region products. This does not preclude a requirement for associative recognition or altered self in the interaction of helper T cells with accessory cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2414-2414
Author(s):  
Yu Hou ◽  
Zhijian Qian

Abstract Fhl2 is a member of four and one half LIM domain protein family. It acts as a transcriptional modulator, regulating proliferation and apoptosis in a cell-context dependent manner. The role of endogenous Fhl2 in hematopoietic stem/progenitor cells (HSCs/HPCs) is still unknown. To determine the in vivo function of Fhl2 in hematopoiesis, we characterized the HSCs/HPCs in Fhl2-null mice. At age of 3 months, Fhl2-null mice revealed normal hematopoietic parameters. As shown by flow cytometric analysis, Fhl2-null mice had a normal distribution of Mac-1+Gr+ myeloid cells, B220+ B cells and CD3+ T cells in bone marrow and spleen, suggesting that Fhl2 loss does not affect mature cell differentiation in young mice. The frequency and total number of stem cell enriched population LSK (Lin-Sca+c-Kit+) and Long-term HSCs (LT-HSCs) (Lin-Sca+c-Kit+CD48-CD150+) were marginally increased in Fhl2-/- mice as compared to wildtype mice, whereas the frequency and the number of hematopoietic progenitor cells was reduced in Fhl2-/- mice as compared to Fhl2+/+ mice. Transplantation exposes HSCs to various stresses including replicative and oxidative stresses. To examine whether Fhl2 regulates the function of HSCs/HPCs under stress, we transplanted bone marrow cells from Fhl2-/- or control mice into lethally-irradiated wildtype mice to generate chimeric mice. 7 months after transplantation, the Fhl2-/- chimeric mice developed MDS-like disease with a significant decrease in platelet, red blood cell (RBC) counts and Hemoglobin (Hb) level as compared to control chimeric mice. The number of LT-HSC, LSK and HPCs in Fhl2-/- chimeric mice were significantly less than they were in control chimeric mice, as determined by flow cytometric analysis. However, the frequency of Mac-1+Gr-1+ myeloid cells, B220+ B cells and CD3+ T cells were comparable in Fhl2-/- and Fhl2+/+ chimeric mice, suggesting that Fhl2 loss reduces repopulation capacity of LT-HSCs but does not affect HPCs differentiation in recipient mice. As evidenced by the reduced G0 population of HSCs and LSKs in Fhl2-null chimeric mice as compared to control chimeric mice, Fhl2 may regulate HSCs self-renewal under stress by controlling HSC quiescence. To further determine the function of HSCs, we performed the competitive repopulation assay. In agreement with the observation that Fhl2-/- HSCs have a reduced repopulation capacity, the ratio of Fhl2-/- derived total Peripheral Blood (PB) cells vs. competitor-derived PB cells was significantly decreased as compared to Fhl2+/+-derived recipients at secondary transplantation, and the ratio gradually decreased up to 4-5-fold as compared to Fhl2+/+-derived recipients at tertiary transplantation. Previously, we showed that FHL2 is down-regulated in subsets of Therapy-related Myelodyplastic Syndrome or Acute Myeloid Leukemia (t-MDS/t-AML patients). Together, these data suggest that Fhl2 is required for maintenance of HSCs/HPCs, and its downregulation may contribute to the development of t-MDS/t-AML in patients. Disclosures: No relevant conflicts of interest to declare.


1974 ◽  
Vol 140 (2) ◽  
pp. 301-312 ◽  
Author(s):  
M. J. Taussig ◽  
Edna Mozes ◽  
Ronit Isac

The genetic control of the antibody response to a synthetic polypeptide antigen designated poly-L(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(T, G)-A--L] has been studied in congenic high responder C3H.SW (H-2b) and low responder C3H/HeJ (H-2k) strains of mice. This response is controlled by the Ir-1 gene and is H-2 linked. The method employed was to study the ability of specifically primed or "educated" T cells of each strain to produce cooperative factors for (T, G)-A--L in vitro. Such factors have been shown to be capable of replacing the requirement for T cells in the thymus-dependent antibody response to (T, G)-A--L in vivo. The T-cell factors produced were tested for their ability to cooperate with B cells of either high or low responder origin by transfer together with bone marrow cells and (T, G)-A--L into heavily irradiated, syngeneic (for bone marrow donor) recipients. Direct anti-(T, G)-A--L plaque-forming cells were measured later in the spleens of the recipients. The results showed that (a) educated T cells of both high and low responder origin produced active cooperative factors to (T, G)-A--L, and no differences between the strains in respect to production of T-cell factors could be demonstrated; and (b) such factors, whether of high or low responder origin, cooperated efficiently with B cells of high responder origin only, and hardly at all with B cells of low responder origin. The conclusion was drawn that the cellular difference between the two strains lies in the responsiveness of their B cells to specific signals or stimuli received from T cells. As far as could be discerned by the methods used, no T-cell defect existed in low responder mice and the expression of the controlling Ir-1 gene was solely at the level of the B cells in this case.


1971 ◽  
Vol 133 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Klaus-Ulrich Hartmann

Spleen cells of bone marrow chimeras (B cells) and of irradiated mice injected with thymus cells and heterologous erythrocytes (educated T cells) were mixed and cultured together (17). The number of PFC developing in these cultures was dependent both on the concentration of the B cells and of the educated T cells. In excess of T cells the number of developing PFC is linearly dependent on the number of B cells. At high concentrations of T cells more PFC developed; the increase in the number of PFC was greatest between the 3rd and 4th day of culture. Increased numbers of educated T cells also assisted the development of PFC directed against the erythrocytes. It is concluded that the T cells not only play a role during the triggering of the precursor cells but also during the time of proliferation of the B cells; close contact between B and T cells seems to be needed to allow the positive activity of the T cells.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 597-604
Author(s):  
KC Anderson ◽  
J Ritz ◽  
T Takvorian ◽  
F Coral ◽  
H Daley ◽  
...  

Hematologic engraftment and immune reconstitution were examined in patients who received cyclophosphamide and total body irradiation therapy followed by infusion of autologous bone marrow purged with anti- B1 monoclonal antibody (MoAb) and complement as therapy for non- Hodgkin's lymphoma. Hematologic engraftment was prompt with return of greater than or equal to 0.5 X 10(3)/microL granulocytes and greater than or equal to 2 X 10(4)/microL platelets at a median of 26 and 29 days posttransplant, respectively. Immunologic reconstitution, in contrast, was prolonged. Normal numbers of circulating B cells were consistently noted by five months posttransplant, whereas return of normal immunoglobulin levels in some patients did not occur for one year. Normal numbers of T cells were evident within the first month posttransplant, but a reversed T4:T8 ratio persisted in some patients up to three years. In vitro responses of either B cells to triggers of activation or of T cells to mitogens and antigens were not normal for at least three months posttransplant. Natural killer (NK) cells predominated early after transplant and may demonstrate cytotoxicity against tumor cells. Our studies demonstrate that transplantation with anti-B1 purged autologous bone marrow results in complete hematologic and delayed immunologic engraftment. No significant acute or chronic clinical toxicities have been observed.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Sarah Srodulski ◽  
Victoria L King

Microsomal prostaglandin E 2 synthase-1 (mPGES-1) catalyzes the conversion of COX-2 generated PGH 2 to PGE 2 and is the predominate source of PGE 2 during and inflammatory response. We and others have demonstrated that mPGES-1 deficiency attenuates atherosclerosis in mice on a mixed background. The present study investigated the effect of mPGES-1 deficiency on atherosclerosis in C57BL/6 low density lipoprotein receptor deficient (LDLr-/-) mice. mPGES-1 deficiency attenuated atherosclerosis in LDLr-/- mice fed either a low fat (LF) (P = 0.02) or high fat (HF) (P = 0.0026) diet enriched with cholesterol, or a western diet (P = 0.02) for 17 weeks. mPGES-1 deficiency attenuated weight gain and cholesterol concentrations in mice fed a western (P = 0.004 and P < 0.05; respectively) or HF diet (P = 0.01 and P = 0.012, respectively). However, body weight and cholesterol concentrations were not different in mice fed the LF diet. These data suggest that different mechanisms mediate the reduction in atherosclerosis in mPGES-1 deficient mice fed LF and HF diets. To determine if mPGES-1 deficiency in macrophages contributed to the reduction in atherosclerosis in mice fed HF diets, 4 groups of chimeric mice were generated. Four weeks post bone marrow cell transplant (BMT) mice were fed a western diet. BMT attenuated weight gain in all groups of chimeric mice; however, weight gain was not different between any of the groups. BMT decreased atherosclerotic lesion formation 10 fold in all groups of mice. Neither bone marrow cell specific deficiency of mPGES-1 (KO>WT) or mPGES-1 specific expression in bone marrow derived cells (WT>KO) had an effect on lesion formation compared to WT>WT or KO>KO mice. Cholesterol concentrations were decreased in KO>KO and WT>KO mice compared to WT>WT (P < 0.01) and KO>WT (P< 0.05) mice. These data suggest that mPGES-1 expression in bone marrow derived cells does not contribute to the development of atherosclerosis. Moreover, these data suggest that prostanoids may play a role in hepatic cholesterol homeostasis in mice fed HF diets enriched in cholesterol thereby contributing to atherosclerotic lesion formation. Moreover, these data provide further evidence that prostanoids play a role in regulating the accumulation of diet-induced adiposity.


1987 ◽  
Vol 61 (2) ◽  
pp. 157-162
Author(s):  
Kazuo Sugane ◽  
Tadashi Matsuura

ABSTRACTA marked strain variation in eosinophilia following oral infection withToxocara caniseggs was observed in mice. Mutual radiation chimeras between high and low responder mice in terms of eosinophilia were made and compared with the respective donor and recipient for eosinophilia after the infection. As a result, the degree and time course of eosinophilia in chimeric mice were similar to those in donors. The result suggested that genes which regulate inheritance of the trait, marked eosinophilia inT. canis-infected mice, might be expressed in bone marrow derived cells.


2006 ◽  
Vol 103 (14) ◽  
pp. 5460-5465 ◽  
Author(s):  
I. Barao ◽  
A. M. Hanash ◽  
W. Hallett ◽  
L. A. Welniak ◽  
K. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document