scholarly journals The immunological basis of endotoxin-induced tumor regression. Requirement for a pre-existing state of concomitant anti-tumor immunity.

1978 ◽  
Vol 148 (6) ◽  
pp. 1560-1569 ◽  
Author(s):  
M J Berendt ◽  
R J North ◽  
D P Kirstein

It was shown that of four syngeneic, murine tumors investigated, only those that evoked the generation of a state of concomitant anti-tumor immunity were susceptible to endotoxin-induced regression. Moreover, the temporal relationship between the generation of concomitant immunity and the onset of susceptibility to endotoxin-induced regression points to the likely possibility that tumor regression depends on the preceding acquisition of the specifically-sensitized, effector T cells that express concomitant immunity. It is suggested that endotoxin-induced hemorrhagic necrosis which invariably precedes tumor regression serves to create conditions inside the tumor that are conducive to the entry and the functioning of effector T cells. It is also suggested that tumor necrosis factor causes hemorrhagic necrosis rather than tumor regression.

1999 ◽  
Vol 190 (11) ◽  
pp. 1697-1710 ◽  
Author(s):  
Fabienne Mackay ◽  
Stephen A. Woodcock ◽  
Pornsri Lawton ◽  
Christine Ambrose ◽  
Manfred Baetscher ◽  
...  

The cause of many autoimmune and inflammatory diseases is unresolved, although dysregulated production of tumor necrosis factor (TNF) family members appears to be important in many cases. BAFF, a new member of the TNF family, binds to B cells and costimulates their growth in vitro. Mice transgenic for BAFF have vastly increased numbers of mature B and effector T cells, and develop autoimmune-like manifestations such as the presence of high levels of rheumatoid factors, circulating immune complexes, anti–DNA autoantibodies, and immunoglobulin deposition in the kidneys. This phenotype is reminiscent of certain human autoimmune disorders and suggests that dysregulation of BAFF expression may be a critical element in the chain of events leading to autoimmunity.


1988 ◽  
Vol 167 (3) ◽  
pp. 1067-1085 ◽  
Author(s):  
E A Havell ◽  
W Fiers ◽  
R J North

The ability of murine recombinant tumor necrosis factor (rTNF) and natural TNF in tumor-necrotizing serum (TNS) to cause regression of the SA1 sarcoma was investigated. We found that to cause regression of a 9-d SA1 sarcoma, near lethal quantities of rTNF and TNS had to be given to the host. However, even at these highly toxic doses, rTNF was not reliable at causing complete tumor regression. On the other hand, both types of TNF were reliable at causing a tumor hemorrhagic reaction that resulted in the destruction of greater than 75% of the tumor's center in 24 h. The TNF-induced hemorrhagic reaction involved the development of numerous petechial hemorrhages in the tumor's vascular bed, which apparently resulted from destruction of the tumor's blood vessels. It was possible to follow the development of the hemorrhagic reaction against time after giving rTNF or TNS by measuring the intratumor extravasation of 51Cr-labeled syngeneic red cells. According to this method, TNF-induced intratumor hemorrhaging was in progress within 1 h of giving TNF and continued for about a 6-h period. However, the hemorrhagic reaction was greatly reduced and complete regression of the rim of the living tumor tissue that survived hemorrhagic necrosis failed to occur, if SA1 sarcoma was growing in T cell-deficient (TXB) mice. This indicates that the TNF-induced hemorrhagic reaction is partly dependent, and the tumor regression that follows is completely dependent on host immunocompetence. This suggests in turn, that rTNF does not directly destroy SA1 tumor cells in vivo, even though it was shown that it can destroy SA1 tumor cells in vitro. This interpretation is supported by the additional findings that rTNF was no more therapeutic against a 3-d (3-mm) SA1 than against a 9-d (8-mm) SA1, and was no more therapeutic when injected directly into the tumor than when injected intravenously. Lastly it was possible to completely inhibit the ability of rTNF and TNS to cause tumor hemorrhagic necrosis and regression by infusing the host with a monospecific, polyvalent anti-rTNF antibody that neutralized the cytotoxic action of rTNF in vitro.


1997 ◽  
Vol 185 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Andrew D. Badley ◽  
David Dockrell ◽  
Margaret Simpson ◽  
Ron Schut ◽  
David H. Lynch ◽  
...  

Apoptosis of bystander uninfected CD4+ T lymphocytes by neighboring HIV-infected cells is observed in cell culture and in lymphoid tissue of HIV-infected individuals. This study addresses whether antigen-presenting cells such as human macrophages mediate apoptosis of CD4+ T cells from HIV-infected individuals. Uninfected human macrophages, and to a larger degree, HIV-infected macrophages mediate apoptosis of T cells from HIV-infected, but not from uninfected control individuals. This macrophage-dependent killing targets CD4+, but not CD8+ T lymphocytes from HIV-infected individuals, and direct contact between macrophages and lymphocytes is required. Additional analyses indicated that the apoptosis-inducing ligands, FasL and tumor necrosis factor (TNF), mediate this macrophage-induced apoptosis of CD4+ T cells. These results support a role for macrophage-associated FasL and TNF in the selective depletion of CD4+ T cells in HIV-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document