scholarly journals Immune responses during pregnancy. Evidence of suppressor cells for splenic antibody response.

1979 ◽  
Vol 150 (4) ◽  
pp. 898-908 ◽  
Author(s):  
K Suzuki ◽  
T B Tomasi

The primary IgM antibody response to sheep erythrocytes in vivo as well as in vitro is markedly decreased in the spleen cells of pregnant mice, compared to age-matched female controls. Decreased antibody synthesis appears to be mediated by nonspecific suppressor cells, because the addition of pregnant spleen cells to the normal spleen cell cultures causes a significant suppression of plaque-forming-cell responses of the normal spleen cells. Suppressor cell activity was not observed in lymph nodes of pregnant mice. At least two populations of pregnant spleen cells were shown to exert a suppressor cell activity; one is T lymphocytes and the other a nylon-adherent cell present in the B-cell-enriched macrophage-depleted fraction. Pregnant spleen cells cultured in vitro were shown to secrete a soluble suppressive factor(s) into the supernatant medium.

1982 ◽  
Vol 156 (5) ◽  
pp. 1398-1414 ◽  
Author(s):  
S Macphail ◽  
O Stutman

Normal mouse spleen cells are not capable of mounting a primary cytotoxic T lymphocyte (Tc) response to non-H-2 alloantigens in vitro, although a good secondary H-2-restricted response is observable after in vivo immunization of the responder animals. Suppressor cells are generated in such a primary responses provided a Mls incompatibility exists between the responder and stimulator. These suppressors are not antigen specific, are Thy-1+, Lyt-1+, 2-, I-J-, and are highly radiosensitive. The suppressor cell precursors in normal spleen express the same phenotype. These suppressor cells are probably implicated in the lack of a primary Tc response in a primary mixed lymphocyte reaction across non-H-2 incompatibilities that include an Mls difference.


1980 ◽  
Vol 29 (2) ◽  
pp. 301-305
Author(s):  
H M Johnson ◽  
J E Blalock

Suppression of the in vitro antibody response to sheep erythrocytes by mouse fibroblast interferon occurred by induction of suppressor cell activity in spleen cells. The suppressor cells produced a soluble factor which mediated the immunosuppression. The suppressor factor did not inhibit virus replication; thus, interferon probably regulates the B-cell response by a mechanism that is different from its antiviral effect.


1973 ◽  
Vol 137 (2) ◽  
pp. 205-223 ◽  
Author(s):  
Robert R. Rich ◽  
Carl W. Pierce

The effects of nonspecific phytomitogens on primary plaque-forming cell (PFC) responses of mouse spleen cells to heterologous erythrocytes in vitro were studied. Spleen cell cultures treated with concanavalin A or phytohemagglutinin in vitro or established with spleen cells derived from mice injected with concanavalin A 24 h previously were similarly affected. In both cases, submitogenic doses resulted in substantial enhancement of PFC responses, whereas 10-fold larger doses were profoundly inhibitory. In contrast to the suppressive effects of mitogenic doses of phytomitogens added at culture initiation, addition of these same doses to cultures 48 h later resulted in increased PFC responses. This enhancement could be observed within 1 h after treatment and consequently could not be ascribed only to mitotic expansion of the antibody-synthesizing clone. Activation of spleen cells with specific antigen before mitogen treatment was not required for expression of the enhancing or suppressing effects on PFC responses. IgM and IgG PFC responses were similarly affected. Studies of cell interactions revealed that as few as 105 spleen cells obtained from mice treated with concanavalin A in vivo synergistically enhanced the PFC responses of 107 normal spleen cells. This enhancement was mediated by mitogen-activated T lymphocytes which were resistant to 2000 R irradiation 24 h after activation. The relevance of these observations to emerging concepts of helper and suppressor T cell activity is discussed.


1978 ◽  
Vol 148 (5) ◽  
pp. 1324-1337 ◽  
Author(s):  
R N Germain ◽  
B Benacerraf

(Responder [R] X nonresponder [NR])F1 mice give indistinguishable primary in vitro plaque-forming cell (PFC) responses to either R or NR parental macrophages (Mphi) pulsed with the Ir-gene controlled antigen L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). However, such (R X NR)F1 mice, if primed to GAT, retained in vitro responsiveness to GAT-R-Mphi, but no longer responded to GAT-NR-Mphi. This suggested (a) a possible Mphi-related locus for Ir gene activity in this model, and (b) the occurrence of active suppression after priming with GAT leading to a selective loss of the usual primary responsiveness of (R X NR)F1 mice to GAT-NR-Mphi. This latter interpretation was tested in the current study. [Responder C57BL/6 (H-2b) X nonresponder DBA/1 (H-2q)]F1 mice were primed with 100 microgram GAT in pertussis adjuvant. 4-8 wk later, spleen cells from such mice were tested alone or mixed with normal unprimed F1 spleen cells for PFC responses to GAT-R-Mphi and GAT-NR-Mphi. The primed cells failed to respond to GAT-NR-Mphi, and moreover, actively suppressed the normal response of unprimed F1 cells to GAT-NR-Mphi. If the primed spleen cell donor had been treated with 5 mg/kg cyclophosphamide 3 days before priming or with 5-10 microliter/day of an antiserum to the I-Jb subregion [B10.A(5R) anti B10.A(3R)] during the first 4 days postpriming (both procedures known to inhibit suppressor T-cell activity), cells from such mice responded in secondary culture to both GAT-R-Mphi and also GAT-NR-MPhi. In addition, such spleen cells no longer were capable of suppressing normal F1 cells in response to GAT-NR-Mphi. Similar data were obtained using [CBA (H-2k) X DBA/1 (H-2q)]F1. Further, it was shown that (a) primary responsiveness to GAT-NR-Mphi was not an artifact of in vitro Mphi pulsing, because in vivo GAT-pulsed Mphi showed the same activity and (b) the secondary restriction for Mphi-antigen presentation was controlled by H-2 linked genes. These data suggest an important role for suppressor T cells in H-2 restricted secondary PFC responses, and also provide additional support for the hypothesis that Ir-gene controlled differences in Mphi antigen presentation are related to both suppressor cell generation and overall responsiveness in the GAT model.


1976 ◽  
Vol 143 (4) ◽  
pp. 728-740 ◽  
Author(s):  
V Kumar ◽  
T Caruso ◽  
M Bennett

Friend leukemia virus (FV) suppressed the proliferative responses of spleen, lymph node, marrow, and thymus cell populations to various T- and B-cell mitogens. Cells taken from mice, e.g. BALB/c genetically susceptible to leukemogenesis in vivo were much more susceptible to suppression of mitogenesis in vitro than similar cells from genetically resistant mice, e.g., C57BL/6. Nylon wool-purified splenic T cells from BALB/c and C3H mice lost susceptibility to FV-induced suppression of mitogenesis but became suppressible by addition of 10% unfiltered spleen cell. Thus, FV mediates in vitro suppression of lymphocyte proliferation indirectly by "activating" a suppressor cell. The suppressor cell adhered to nylon wool but not to glass wool or rayon wool columns. Pretreatment of spleen cells with carbonyl iron and a magnet did not abrogate the suppressor cell function. Suppressor cells were not eliminated by treatment with rabbit antimouse immunoglobulin (7S) and complement (C). However, high concentrations of anti-Thy-1 plus C destroyed suppressor cells of the spleen; thymic suppressor cells were much more susceptible to anti-Thy-1 serum. Nude athymic mice were devoid of suppressor cells and their B-cell proliferation was relatively resistant to FV-induced suppression in vitro. The suppressor cells in the thymus (but not in the spleen) were eliminated by treatment of mice with cortisol. Thus, FV appears to mediate its suppressive effect on mitogen-responsive lymphocytes by affecting "T-suppressor cells." Spleen cells from C57BL/6 mice treated with 89Sr to destroy marrow-dependent (M) cells were much more suppressible by FV in virto than normal C57BL/6 spleen cells. However, nylon-filtered spleen cells of 89Sr-treated C57BL/6 mice were resistant to FV-induced suppression in vitro, indicating that the susceptibility of spleen cells from 89Sr-treated B6 mice is also mediated by suppressor cells. Normal B6 splenic T cells were rendered susceptible to FV-induced suppression of mitogenesis by addition of 10% spleen cells from 89Sr-treated B6 mice. Thus, M cells appear to regulate the numbers and/or functions of T-suppressor cells which in turn mediate the immunosuppressive effects of FV in vitro. Neither mitogen-responsive lymphocytes nor T-suppressor cells are genetically resistant or susceptible to FV. The genetic resistance to FV is apparently a function of M cells, both in vitro as well as in vivo.


1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


2003 ◽  
Vol 3 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Kristi A Haskins ◽  
Scott M Schlauder ◽  
James H Holda

1992 ◽  
Vol 23 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Patricia A. Thiem ◽  
Johanne M. Kaplan ◽  
Peter J. Bugelski ◽  
Elizabeth V. Ruggieri ◽  
Alison M. Badger

1985 ◽  
Vol 162 (6) ◽  
pp. 1935-1953 ◽  
Author(s):  
Y A Mekori ◽  
G L Weitzman ◽  
S J Galli

It has been suggested that reserpine blocks expression of delayed hypersensitivity (DH) by depleting tissue mast cells of serotonin (5-HT), thereby preventing a T cell-dependent release of mast cell 5-HT necessary to localize and to amplify the DH response. However, reserpine blocks expression of DH in mast cell-deficient mice. We therefore decided to reevaluate the mechanism by which reserpine abrogates expression of cellular immunity, and investigated whether the drug might interfere with T cell activity in vitro or in vivo. At concentrations as low as 4 microM, reserpine profoundly suppressed baseline or antigen-augmented levels of [3H]thymidine incorporation by immune lymph node cells obtained from mice sensitized to the contactant oxazolone [I-LNC(Ox)]. This effect was observed both with I-LNC derived from normal mice and with I-LNC derived from congenitally mast cell-deficient W/Wv mice, cell preparations that lacked detectable mast cells, histamine, and 5-HT. Furthermore, treatment of I-LNC with reserpine (20 microM) for 1 h in vitro virtually abolished the ability of these cells to transfer CS to naive mice. This was not a cytolytic effect, as the viability of the I-LNC treated with reserpine was not affected, and washing of the reserpine-treated I-LNC before transfer fully restored their ability to orchestrate a CS response. The action of the drug was not mediated by an effect on mast cells, since the experiment could be performed using mast cell-deficient W/Wv mice as both donors and recipients of I-LNC. In addition, the effect was specific for the treated cells: mice that received reserpine-treated I-LNC(Ox) intravenously together with untreated I-LNC(DNFB) did not develop CS to Ox but responded normally to DNFB; and local intradermal injection of reserpine-treated I-LNC(Ox) which failed to transfer reactivity to Ox, did not interfere with the development of CS to DNFB at the same site. Finally, cotransfer experiments indicated that the effect of reserpine on the transfer of CS was not due to activation of suppressor cells. Our findings strongly suggest that whatever effects reserpine might have on immunologically nonspecific host cells, the drug's effects on sensitized T cells are sufficient to explain its ability to block cell-mediated immune responses in vivo.


Sign in / Sign up

Export Citation Format

Share Document