scholarly journals Reevaluation of reserpine-induced suppression of contact sensitivity. Evidence that reserpine interferes with T lymphocyte function independently of an effect on mast cells.

1985 ◽  
Vol 162 (6) ◽  
pp. 1935-1953 ◽  
Author(s):  
Y A Mekori ◽  
G L Weitzman ◽  
S J Galli

It has been suggested that reserpine blocks expression of delayed hypersensitivity (DH) by depleting tissue mast cells of serotonin (5-HT), thereby preventing a T cell-dependent release of mast cell 5-HT necessary to localize and to amplify the DH response. However, reserpine blocks expression of DH in mast cell-deficient mice. We therefore decided to reevaluate the mechanism by which reserpine abrogates expression of cellular immunity, and investigated whether the drug might interfere with T cell activity in vitro or in vivo. At concentrations as low as 4 microM, reserpine profoundly suppressed baseline or antigen-augmented levels of [3H]thymidine incorporation by immune lymph node cells obtained from mice sensitized to the contactant oxazolone [I-LNC(Ox)]. This effect was observed both with I-LNC derived from normal mice and with I-LNC derived from congenitally mast cell-deficient W/Wv mice, cell preparations that lacked detectable mast cells, histamine, and 5-HT. Furthermore, treatment of I-LNC with reserpine (20 microM) for 1 h in vitro virtually abolished the ability of these cells to transfer CS to naive mice. This was not a cytolytic effect, as the viability of the I-LNC treated with reserpine was not affected, and washing of the reserpine-treated I-LNC before transfer fully restored their ability to orchestrate a CS response. The action of the drug was not mediated by an effect on mast cells, since the experiment could be performed using mast cell-deficient W/Wv mice as both donors and recipients of I-LNC. In addition, the effect was specific for the treated cells: mice that received reserpine-treated I-LNC(Ox) intravenously together with untreated I-LNC(DNFB) did not develop CS to Ox but responded normally to DNFB; and local intradermal injection of reserpine-treated I-LNC(Ox) which failed to transfer reactivity to Ox, did not interfere with the development of CS to DNFB at the same site. Finally, cotransfer experiments indicated that the effect of reserpine on the transfer of CS was not due to activation of suppressor cells. Our findings strongly suggest that whatever effects reserpine might have on immunologically nonspecific host cells, the drug's effects on sensitized T cells are sufficient to explain its ability to block cell-mediated immune responses in vivo.

Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 978-987 ◽  
Author(s):  
Zane Orinska ◽  
Elena Bulanova ◽  
Vadim Budagian ◽  
Martin Metz ◽  
Marcus Maurer ◽  
...  

AbstractMast cells play an important role in host defense against various pathogens, but their role in viral infection has not been clarified in detail. dsRNA, synthesized by various types of viruses and mimicked by polyinosinic-polycytidylic acid (poly(I:C)) is recognized by Toll-like receptor 3 (TLR3). In this study, we demonstrate that poly(I:C) injection in vivo potently stimulates peritoneal mast cells to up-regulate a number of different costimulatory molecules. Therefore, we examined the expression and the functional significance of TLR3 activation in mast cells. Mast cells express TLR3 on the cell surface and intracellularly. After stimulation of mast cells with poly(I:C) and Newcastle disease virus (NDV), TLR3 is phosphorylated and the expression of key antiviral response cytokines (interferon β, ISG15) and chemokines (IP10, RANTES) is upregulated. Interestingly, mast cells activated via TLR3-poly(I:C) potently stimulate CD8+ T-cell recruitment. Indeed, mast-cell–deficient mice (KitW/KitW-v) given an intraperitoneal injection of poly(I:C) show a decreased CD8+ T-cell recruitment, whereas granulocytes normally migrate to the peritoneal cavity. Mast-cell reconstitution of KitW/KitW-v mice normalizes the CD8+ T-cell influx. Thus, mast cells stimulated through engagement of TLR3 are potent regulators of CD8+ T-cell activities in vitro and in vivo.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Bradford A. Youngblood ◽  
John Leung ◽  
Rustom Falahati ◽  
Jason Williams ◽  
Julia Schanin ◽  
...  

Siglecs (sialic acid-binding immunoglobulin-like lectins) are single-pass cell surface receptors that have inhibitory activities on immune cells. Among these, Siglec-8 is a CD33-related family member selectively expressed on human mast cells and eosinophils, and at low levels on basophils. These cells can participate in inflammatory responses by releasing mediators that attract or activate other cells, contributing to the pathogenesis of allergic and non-allergic diseases. Since its discovery in 2000, initial in vitro studies have found that the engagement of Siglec-8 with a monoclonal antibody or with selective polyvalent sialoglycan ligands induced the cell death of eosinophils and inhibited mast cell degranulation. Anti-Siglec-8 antibody administration in vivo to humanized and transgenic mice selectively expressing Siglec-8 on mouse eosinophils and mast cells confirmed the in vitro findings, and identified additional anti-inflammatory effects. AK002 (lirentelimab) is a humanized non-fucosylated IgG1 antibody against Siglec-8 in clinical development for mast cell- and eosinophil-mediated diseases. AK002 administration has safely demonstrated the inhibition of mast cell activity and the depletion of eosinophils in several phase 1 and phase 2 trials. This article reviews the discovery and functions of Siglec-8, and strategies for its therapeutic targeting for the treatment of eosinophil- and mast cell-associated diseases.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Y Kanakura ◽  
H Thompson ◽  
T Nakano ◽  
T Yamamura ◽  
H Asai ◽  
...  

Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of [35S] sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate [35S] proteoglycans. When “MMC-like” cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1- W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these “second generation PMC” formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.


1998 ◽  
Vol 275 (5) ◽  
pp. C1291-C1299 ◽  
Author(s):  
Jaroslaw Dastych ◽  
Dennis Taub ◽  
Mary C. Hardison ◽  
Dean D. Metcalfe

W/Wvmice are deficient in tissue mast cells, and mast cells cultured from these mice do not proliferate in response to the c-kit ligand, stem cell factor (SCF). In this paper, we report that mouse bone marrow cultured mast cells derived from W/Wvmice do adhere to fibronectin in the presence of SCF and exhibit chemotaxis to SCF, and we explore this model for the understanding of c-kit-mediated signaling pathways. Both in vitro and in vivo (in intact cells) phosphorylation experiments demonstrated a low residual level of W/Wvc-kit protein phosphorylation. SCF-induced responses in W/Wvmast cells were abolished by the tyrosine kinase inhibitor herbimycin A and by the phospatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin but were not affected by protein kinase C inhibitors. These observations are consistent with the conclusions that Wvc-kit initiates a signaling process that is PI 3-kinase dependent and that mutated Wvc-kit retains the ability to initiate mast cell adhesion and migration.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 798-805 ◽  
Author(s):  
BR Blazar ◽  
DL Thiele ◽  
DA Vallera

Abstract Incubation of murine bone marrow and splenocytes with the dipeptide methyl ester, L-leucyl-L-leucine methyl ester (Leu-Leu-OMe), which results in the selective depletion of cytotoxic T cells and their precursors, natural killer cells, and monocytes, completely protected 30 recipients of fully allogeneic donor grafts from lethal graft-versus- host disease (GVHD). These results were comparable with those obtained in 30 recipients of anti-Thy 1.2 plus complement (C')-treated donor marrow. However, in contrast to antibody- and C'-dependent T-cell depletion, which reduces the level of donor cell engraftment in our model system, we did not observe such effects using Leu-Leu-OMe marrow pretreatment. As compared with the 24 H-2 typed recipients of anti-Thy 1.2 + C'-treated donor grafts, the 29 H-2 typed recipients of Leu-Leu- OMe-treated donor grafts had significantly (P less than .001) higher percentages of donor cells (mean = 93% v 74%) and significantly (P less than .001) lower percentages of host cells (mean = 6% v 15%) posttransplantation. In vitro limiting dilution assay (LDA) was performed to assess the comparative efficacy of cytolytic T-lymphocyte (CTL) precursor depletion by Leu-Leu-OMe or anti-Thy 1.2 + C' pretreatment. We observed greater levels of CTL precursor depletion in Leu-Leu-OMe treated as compared with anti-Thy 1.2 + C'-treated bone marrow plus spleen cells (BMS) obtained from nontransplanted mice. This suggests that the in vivo results cannot simply be attributed to a less efficacious functional inactivation of cytolytic T-cell precursors by Leu-Leu-OMe treatment as compared with anti-Thy 1.2 + C' treatment. Immunoreconstitution was similar in recipients of Leu-Leu-OMe-treated grafts and anti-Thy 1.2 + C'-treated grafts 100 days posttransplant. In our opinion, Leu-Leu-OMe marrow pretreatment deserves further investigation as a methodology to achieve GVHD prevention without significantly reducing the propensity toward host cell repopulation.


1999 ◽  
Vol 190 (10) ◽  
pp. 1383-1392 ◽  
Author(s):  
Martin F. Bachmann ◽  
Marijke Barner ◽  
Manfred Kopf

It has been proposed that CD2, which is highly expressed on T cells, serves to enhance T cell–antigen presenting cell (APC) adhesion and costimulate T cell activation. Here we analyzed the role of CD2 using CD2-deficient mice crossed with transgenic mice expressing a T cell receptor specific for lymphocytic choriomeningitis virus (LCMV)-derived peptide p33. We found that absence of CD2 on T cells shifted the p33-specific dose–response curve in vitro by a factor of 3–10. In comparison, stimulation of T cells in the absence of lymphocyte function–associated antigen (LFA)-1–intercellular adhesion molecule (ICAM)-1 interaction shifted the dose–response curve by a factor of 10, whereas absence of both CD2–CD48 and LFA-1–ICAM-1 interactions shifted the response by a factor of ∼100. This indicates that CD2 and LFA-1 facilitate T cell activation additively. T cell activation at low antigen density was blocked at its very first steps, as T cell APC conjugate formation, TCR triggering, and Ca2+ fluxes were affected by the absence of CD2. In vivo, LCMV-specific, CD2-deficient T cells proliferated normally upon infection with live virus but responded in a reduced fashion upon cross-priming. Thus, CD2 sets quantitative thresholds and fine-tunes T cell activation both in vitro and in vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wuzhen Chen ◽  
Jingxin Jiang ◽  
Wenjie Xia ◽  
Jian Huang

Exosomes are a kind of cell-released membrane-form structures which contain proteins, lipids, and nucleic acids. These vesicular organelles play a key role in intercellular communication. Numerous experiments demonstrated that tumor-related exosomes (TEXs) can induce immune surveillance in the microenvironment in vivo and in vitro. They can interfere with the maturation of DC cells, impair NK cell activation, induce myeloid-derived suppressor cells, and educate macrophages into protumor phenotype. They can also selectively induce effector T cell apoptosis via Fas/FasL interaction and enhance regulatory T cell proliferation and function by releasing TGF-β. In this review, we focus on the TEX-induced immunosuppression and microenvironment change. Based on the truth that TEXs play crucial roles in suppressing the immune system, studies on modification of exosomes as immunotherapy strategies will also be discussed.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1707-1707
Author(s):  
Giovanni Migliaccio ◽  
Barbara Ghinassi ◽  
Lucia Centurione ◽  
Maria Zingariello ◽  
Lucia Bianchi ◽  
...  

Abstract Megakaryocytopoiesis is regulated by extrinsic (interaction of the growth factor thrombopoietin, TPO with its receptor Mpl) and intrinsic (interaction between the trascription factors GATA-1 and Fog-1) factors. The observation that mice impaired for GATA-1 expression (i.e. harbouring the GATA-1low mutation) are defective not only in megakaryocyte maturation but also in mast cell differentiation (Migliaccio et al. J Exp Med197:281, 2003), led us to investigate whether TPO might control mast cell differentiation as well. We first observed that mice genetically unable to responde to TPO (Mplnull mice) express in the connective tissues 5 times more mast cells than their normal littermates. Then, we analysed the effects on mast cell differentiation of in vivo treatment with TPO. Normal mice, and their GATA-1low littermates, were injected i.p. with TPO (100 μg/kg/day per 5 days, kindly provided by Kirin Brewery, Japan) and the number of immature (Toluidinepos) and mature (AlcianBlue/Saphraninepos) mast cells present in the connective tissues of the animals, as well as the frequency of GATA-1pos and TUNELpos mast cells, was evaluated 14 days after treatment. In wild-type animals, TPO reduced the presence of GATA-1 in mast cells (by immuno-histochemistry) and increased the number of immature cells (from 320±28 to 852±60) and of those undergoing apoptosis (from 16±1 to 600±43). In contrast, in GATA-1low animals, TPO-treatment induced the expression of GATA-1 in mast cells while decreased the number of immature cells (from 1100±72 to 427±29) as well as that of apoptotic cells (from 600±45 to 60±2). The role of TPO on mast cell differentiation were further confirmed by the analysis of the effects exerted by the growth factor on in vitro differentiation of bone marrow derived mast cells (BMMC). In these experiments, wild type bone marrow and spleen cells were cultured for 21 days with SCF and IL-3 with or without TPO and BMMC differentiation measured on the basis of the number of cells expressing the phenotype c-kithigh/CD34high and FcεRIpos. In cultures stimulated with SCF and IL-3, all the cells expressed the phenotype c-kithigh/CD34high and FcεRIpos. In contrast, in cultures supplemented also with SCF, IL-3 and TPO, only 25% of the cells were c-kithigh/CD34high and none of them was FcεRIpos. These results establish a role for TPO in the control of mast cell differentiation (possibly by modulating the GATA-1 content of the cells) and unveil further similarities between the mechanism(s) controlling megakaryocyte and mast cell differentiation.


1980 ◽  
Vol 152 (4) ◽  
pp. 823-841 ◽  
Author(s):  
E Fernandez-Cruz ◽  
B A Woda ◽  
J D Feldman

Established subcutaneous Moloney sarcomas (MST-1) of large size and long duration were eliminated from syngeneic rats by intravenous infusion of varying numbers of specific syngeneic effector T lymphocytes. Spleen cells from BN rats in which tumor had regressed were cultured in an in vitro mixed lymphocyte tumor cell culture (MLTC) to augment cytotoxicity of effector cells. In the MLTC a T cell subset was expanded in response to MST-1 antigens and transformed into blast elements. With these changes, there was an increase in the W3/25 antigen on the T cell surface, a decrease of W3/13 antigen, and an increase in the number of T cells with Ia antigens. The subset associated with elimination of established tumors was a blast T cell W3/25+, W3/13+, as detected by monoclonal antibodies to rat T antigens. The W3/25+ subset was poorly cytotoxic in vitro for MST-1 and apparently functioned in vivo as an amplifier or helper cell in the tumor-bearing host. The W3/25- population was a melange of cells that included (W3/13+, W3/25-) T cells, null cells, Ig+ cells, and macrophages, and was associated with enhancement of tumor in vivo, suggesting the presence of suppressor cells.


Sign in / Sign up

Export Citation Format

Share Document