scholarly journals Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha.

1987 ◽  
Vol 166 (4) ◽  
pp. 991-998 ◽  
Author(s):  
G E Ranges ◽  
I S Figari ◽  
T Espevik ◽  
M A Palladino

The immunoregulatory effects of transforming growth factor beta (TGF-beta) and recombinant murine tumor necrosis factor alpha (rMuTNF-alpha) on CTL generation and activity were examined. The results demonstrate that TGF-beta, in a dose-dependent manner, inhibited CTL generation but not CTL activity. The inhibitory effects were detected only when TGF-beta was added within the first 48 h of the MLC. Little activity was seen when it was added thereafter, including the addition of TGF-beta to the cytotoxicity assay. The production of TNF-alpha, which occurs during early phases of the MLC and which is inhibited in the presence of TGF-beta, appears to have an important regulatory role, as altering the levels of TNF-alpha in an MLC can significantly influence CTL development. The inhibitory effects of TGF-beta on the MLC can be significantly reversed by the addition of rMuTNF-alpha to the cultures. These results demonstrate that TGF-beta can inhibit MLC and subsequent CTL generation at early stages of the reaction, and such inhibition may involve the suppression of TNF-alpha production.

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5016-5026 ◽  
Author(s):  
SE Jacobsen ◽  
OP Veiby ◽  
J Myklebust ◽  
C Okkenhaug ◽  
SD Lyman

The recently cloned flt3 ligand (FL) stimulates the growth of primitive hematopoietic progenitor cells through synergistic interactions with multiple other cytokines. The present study is the first demonstrating cytokines capable of inhibiting FL-stimulated hematopoietic cell growth. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta l) potently inhibited the clonal growth of murine Lin-Sca-l+ bone marrow progenitors stimulated by FL alone or in combination with granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), interleukin (IL)-3, IL-6, IL-11, or IL-12. TGF-beta 1 inhibited more than 96% of the myeloid colony formation in response to these cytokine combinations, whereas TNF-alpha reduced the number of colonies by 58% to 96% depending on the cytokine by which FL was combined. In addition, both TNF-alpha and TGF-beta 1 inhibited more than 90% of B220+ cell production from B220- bone marrow cells stimulated by FL + IL-7. The effects of TNF-alpha and TGF-beta 1 appeared to be due to a direct effect and on the early progenitors because the inhibition was observed at the single cell level, and because delayed addition of the two inhibitors for only 48 hours dramatically reduced their inhibitory effects. A neutralizing anti-TGF- beta antibody showed the presence of endogenous TGF-beta in the cultures and potently enhanced the ability of FL to stimulate progenitor cell growth in the absence of other cytokines. Agonistic antibodies specifically activating the p75 TNF receptors were more efficient than wild type murine TNF-alpha in signaling growth inhibition of Lin-Sca-l+ progenitor cells, whereas the p55 agonist had less effect than murine TNF-alpha. Finally, TGF-beta increased the number of FL + IL-11-stimulated Lin-Sca-1+ cells in the G1 phase of the cell cycle with 76%, whereas TNF-alpha only had a marginal effect on cell cycle distribution. Thus, TGF-beta, TNF-alpha, and p75 TNF receptor agonists are potent direct inhibitors of FL-stimulated progenitor cell growth in vitro.


Sign in / Sign up

Export Citation Format

Share Document