scholarly journals Induction of peripheral tolerance to class I major histocompatibility complex (MHC) alloantigens in adult mice: transfused class I MHC-incompatible splenocytes veto clonal responses of antigen-reactive Lyt-2+ T cells.

1990 ◽  
Vol 172 (3) ◽  
pp. 719-728 ◽  
Author(s):  
K Heeg ◽  
H Wagner

The efficacy and the mode of action of pretransplant transfusion with class I major histocompatibility complex (MHC)-disparate splenocytes in establishing a state of peripheral tolerance in adult mice is analyzed. Adult mice injected intravenously with a critical number of approximately 5 x 10(7) allogenic splenocytes accept skin grafts and develop chimerism in the peripheral lymphatic tissues, but not in thymus and bone marrow. In parallel, a split tolerance evolves: the frequency of class I MHC-reactive Lyt-2+ cytotoxic T lymphocyte precursor (CTL-p)- and interleukin 2 (IL-2)-producing T cells falls off in the peripheral lymphoid tissue, but remains unaltered intrathymically. In particular, high affinity CTL-p become clonally undetectable. In vivo generation of tolerant cells is cyclosporin A resistant, but dependent on recipient L3T4+ T cells. Loss of Lyt-2+ CTL-p- and IL-2-producing T cell precursors is not due to active suppression, but is caused by clonal anergy. Donor-derived chimeric cells positively selected 7 d after intravenous transfusion exhibit in vitro the hallmarks of veto cells, i.e., paralyze CTL-p reactive to donor-type class I MHC alloantigens. We conclude that the peripheral (split) tolerance induced in vivo by pretransplant transfusion operates because donor-type cells develop in vivo efficiently into "veto cells," which in turn induce a state of clonal anergy within antigen-reactive Lyt-2+ T lymphocytes.

2010 ◽  
Vol 207 (8) ◽  
pp. 1701-1711 ◽  
Author(s):  
Rachel A. Gottschalk ◽  
Emily Corse ◽  
James P. Allison

T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3+ (Foxp3+) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR–peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3+ T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3566-3573 ◽  
Author(s):  
Søren Skov ◽  
Mette Nielsen ◽  
Søren Bregenholt ◽  
Niels Ødum ◽  
Mogens H. Claesson

Abstract Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3. In addition, the transcription factor Stat-3 was tyrosine phosphorylated in the cytoplasma and subsequently translocated to the cell nucleus. Data obtained by electrophoretic mobility shift assay suggested that the activated Stat-3 protein associates with the human serum-inducible element (hSIE) DNA-probe derived from the interferon-γ activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest the involvement of the Jak/Stat signal pathway in MHC-I–induced signal transduction in T cells.


1987 ◽  
Vol 166 (6) ◽  
pp. 1716-1733 ◽  
Author(s):  
J S Weber ◽  
G Jay ◽  
K Tanaka ◽  
S A Rosenberg

We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.


1983 ◽  
Vol 157 (2) ◽  
pp. 720-729 ◽  
Author(s):  
S L Swain ◽  
R W Dutton ◽  
R Schwab ◽  
J Yamamoto

Human T cells respond strongly to mouse major histocompatibility complex (MHC) antigens. The response is directed predominantly to the polymorphic determinants of the MHC antigens and there is little or no response to the nonpolymorphic determinants or to non-MHC antigens. Human cytotoxic T lymphocytes (CTL) are generated specific for the mouse class I MHC antigens and the CTL effectors are blocked by anti-Leu-2a antisera. Human interleukin 2-producing T cells are generated specific for mouse class II antigens and their induction is blocked by anti-Leu-3a antisera. These and other considerations lead us to propose a model for the T cell receptor that provides an explanation for several of the features of T cell recognition. In this model, the recognition of the "class" (I or II) of MHC antigen is separate from the recognition of the polymorphic determinants. We suggest that the initial recognition of the conserved "class" determinants positions another domain of the receptor so that it can only engage with the part of the MHC molecule carrying the polymorphic determinants.


2005 ◽  
Vol 116 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Brenna Carey ◽  
Monica DeLay ◽  
Jane E. Strasser ◽  
Claudia Chalk ◽  
Kristen Dudley-McClain ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Li Guo ◽  
Sikui Shen ◽  
Jesse W Rowley ◽  
Neal D. Tolley ◽  
Wenwen Jia ◽  
...  

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased, and have been associated with adverse clinical events, including increased platelet-T cell interactions. Sepsis is associated with reduced CD8+ T cell numbers and functional responses, but whether platelets regulate CD8+ T cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (e.g., IFN-g and LPS). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage specific MHC-I deficient mouse strain (B2mf/f--Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo during sepsis. Loss of platelet MHC-I reduced sepsis-associated mortality in mice in an antigen specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen specific CD8+ T cells, and regulate CD8+ T cell number, functional responses, and outcomes during sepsis.


1993 ◽  
Vol 177 (6) ◽  
pp. 1541-1550 ◽  
Author(s):  
S C Jameson ◽  
F R Carbone ◽  
M J Bevan

A previous report showed that the proliferative response of helper T cells to class II major histocompatibility complex (MHC)-restricted antigens can be inhibited by analogues of the antigen, which act as T cell receptor (TCR) antagonists. Here we define and analyze peptide variants that antagonize various functions of class I MHC-restricted cytotoxic T lymphocyte (CTL) clones. Of 64 variants at individual TCR contact sites of the Kb-restricted octamer peptide ovalbumin257-264 (OVAp), a very high proportion (40%) antagonized lysis by three OVAp-specific CTL clones. This effect was highly clone specific, since many antagonists for one T cell clone have differential effects on another. We show that this inhibition of CTL function is not a result of T cell-T cell interaction, precluding veto-like phenomena as a mechanism for antagonism. Moreover, we present evidence for direct interaction between the TCR and antagonist-MHC complexes. In further analysis of the T cell response, we found that serine esterase release and cytokine production are susceptible to TCR antagonism similarly to lysis. Ca2+ flux, an early event in signaling, is also inhibited by antagonists but may be more resistant to the antagonist effect than downstream responses.


1991 ◽  
Vol 173 (4) ◽  
pp. 841-847 ◽  
Author(s):  
J D Davies ◽  
D H Wilson ◽  
D B Wilson

Here, we explore the conditions required for generating two different highly potent F1 antiparental killer cell populations to unusual antigens in rats. The first, L/DA anti-DA, has lytic specificity for two antigen systems: MTA, a mitochondrial antigen expressed on DA and DA Lewis (L) target cells restricted by RT1A class I molecules; and H, an antigen that maps to the class I-like RT1C region and is present only on parental target cells from donors homozygous at the major histocompatibility complex. The second killer population is generated in the reciprocal DA/L anti-DA combination and has lytic specificity only for the H antigen system. We show that the killer cells are T cells, and that generation of these F1 cytotoxic T lymphocytes (CTL) requires an in vivo priming step in which it is essential that the inoculated parental cells bear the relevant target antigens and possess alloreactivity for F1 host antigens. The requirement for alloreactivity and antigen on the same priming cell population suggests that these potent lytic responses depend on a situation akin to a hapten-carrier effect that bypasses otherwise ineffective helper responses by the host to these unusual antigens. Restimulation of F1 lymphocytes in culture is also necessary, requiring the presence of antigen on irradiated lymphoblast stimulator cells, but alloreactivity to responder cell antigens is not necessary; normal, nonactivated lymph node cells are completely ineffective as stimulators. For effective lysis, the target cells need not possess the potential for alloreactivity to responder F1 CTL. We also demonstrate in a preliminary way additional antigen systems defined by killer populations raised with other F1 antiparental strain combinations.


Sign in / Sign up

Export Citation Format

Share Document