scholarly journals CD4-CD8- T cell receptor alpha beta T cells: generation of an in vitro major histocompatibility complex class I specific cytotoxic T lymphocyte response and allogeneic tumor rejection.

1991 ◽  
Vol 174 (1) ◽  
pp. 193-201 ◽  
Author(s):  
M Mieno ◽  
R Suto ◽  
Y Obata ◽  
H Udono ◽  
T Takahashi ◽  
...  

The generation of an in vitro major histocompatibility complex class I specific response of CD4-CD8- T cell receptor (TCR) alpha beta cytotoxic T lymphocytes (CTL) and their allogeneic tumor rejection were investigated. Inocula of BALBRL male 1 were rejected in C57BL/6 (B6) mice treated with minimum essential medium (MEM) (control), anti-L3T4 (CD4) monoclonal antibody (mAb) or anti-Lyt-2.2 (CD8) mAb and CTL against the tumor were generated in vitro. No rejection and no induction of CTL were observed in B6 mice treated with anti-L3T4 (CD4) plus anti-Lyt-2.2 (CD8) mAb. CTL with the classical Thy-1+ CD3+CD4-CD8+ TCR alpha beta phenotype were generated in mixed lymphocyte tumor cell culture (MLTC) spleen cells from B6 mice treated with MEM (control) or anti-L3T4 (CD4) mAb, whereas CTL with an unusual Thy-1+CD3+CD4-CD8- TCR alpha beta phenotype were generated in MLTC spleen cells from anti-Lyt-2.2 (CD8) mAb-treated B6 mice. Both types of CTL were reactive with both H-2Kd and Dd (Ld) class I antigen. These findings suggest that when CD4+ cells were blocked by anti-L3T4 (CD4) mAb, CD8+ CTL mediated rejection, and when CD8+ cells were blocked by anti-Lyt-2.2 (CD8) mAb, CD4+ cells were capable of mediating rejection, although less efficiently than CD8+ cells, by inducing CD4-CD8- TCR alpha beta CTL. The finding that adoptive transfer of CD4 and CD8-depleted MLTC spleen cells, obtained from anti-Lyt-2.2 (CD8) mAb-treated B6 mice that had rejected BALBRL male 1, resulted in rejection of BALBRL male 1 inoculated into B6 nu/nu mice confirmed the above notion. CTL clones with the CD4-CD8- TCR alpha beta phenotype specific for Ld were established.

1994 ◽  
Vol 180 (2) ◽  
pp. 699-704 ◽  
Author(s):  
T Ohteki ◽  
H R MacDonald

Normal mouse liver contains prominent subsets of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells with intermediate TCR levels. We show here that these cells express the natural killer (NK)1.1 surface antigen and have a restricted TCRV beta repertoire that is highly skewed to V beta 7 and V beta 8. Surprisingly, both CD4+8- and CD4-8- subsets of NK1.1+TCR-alpha/beta+ cells are absent in the liver of beta 2-microglobulin deficient mice, which do not express major histocompatibility complex (MHC) class I or "class I-like" molecules. Analysis of reciprocal radiation bone marrow chimeras established with beta 2-microglobulin deficient and wild-type mice demonstrates that MHC class I expression on radiosensitive (presumably hematopoietic) cells is required for the development of NK1.1+TCR-alpha/beta+ cells in the liver. In the liver of MHC class II deficient mice, the CD4+8- and CD4-8- subsets of NK1.1+TCR-alpha/beta+ cells develop normally. Collectively our data suggest that NK1.1+TCR-alpha/beta+ cells in liver require interaction with a MHC class I-related ligand on hematopoietic cells for their development. This unusual property of liver T cells is shared by a subset of CD4-8-NK1.1+TCR-alpha/beta+ thymocytes, suggesting a common lineage independent of the mainstream of T cell development.


2001 ◽  
Vol 276 (24) ◽  
pp. 21443-21449 ◽  
Author(s):  
Ashwani K. Sharma ◽  
Jennifer J. Kuhns ◽  
Shuqin Yan ◽  
Randall H. Friedline ◽  
Brian Long ◽  
...  

1994 ◽  
Vol 180 (3) ◽  
pp. 1097-1106 ◽  
Author(s):  
O Lantz ◽  
A Bendelac

The mouse thymus contains a mature T cell subset that is distinguishable from the mainstream thymocytes by several characteristics. It is restricted in its usage of T cell receptor (TCR) V beta genes to V beta 8, V beta 7, and V beta 2. Its surface phenotype is that of activated/memory cells. It carries the natural killer NK1.1 surface marker. Furthermore, though it consists entirely of CD4+ and CD4-8- cells, its selection in the thymus depends solely upon major histocompatibility complex (MHC) class I expression by cells of hematopoietic origin. Forced persistence of CD8, in fact, imparts negative selection. Here, we have studied the TCR repertoire of this subset and found that, whereas the beta chain V-D-J junctions are quite variable, a single invariant alpha chain V alpha 14-J281 is used by a majority of the TCRs. This surprisingly restricted usage of the V alpha 14-J281 alpha chain is dependent on MHC class I expression, but independent of the MHC haplotype. In humans, a similar unusual population including CD4-8- cells can also be found that uses a strikingly homologous, invariant alpha chain V alpha 24-JQ. Thus, this unique V alpha-J alpha combination has been conserved in both species, conferring specificity to some shared nonpolymorphic MHC class I/peptide self-ligand(s). This implies that the T cell subset that it defines has a specialized and important role, perhaps related to its unique ability to secrete a large set of lymphokines including interleukin 4, upon primary stimulation in vitro and in vivo.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1735-1738 ◽  
Author(s):  
Stephanie Bridenbaugh ◽  
Linda Kenins ◽  
Emilie Bouliong-Pillai ◽  
Christian P. Kalberer ◽  
Elena Shklovskaya ◽  
...  

Abstract Clinical observations in patients undergoing bone marrow transplantation implicate the involvement of CD8+ cells in promoting the stem-cell engraftment process. These findings are supported by mouse transplant studies, which attributed the engraftment-facilitating function to subpopulations of murine CD8+ cells, but the analogous cells in humans have not been identified. Here, we report that clinical stem-cell grafts contain a population of CD8α+CD3ϵ+ T-cell receptor– negative cells with an engraftment facilitating function, named candidate facilitating cells (cFCs). Purified cFC augmented human hematopoiesis in NOD/SCID mice receiving suboptimal doses of human CD34+ cells. In vitro, cFCs cocultured with CD34+ cells increased hematopoietic colony formation, suggesting a direct effect on clonogenic precursors. These results provide evidence for the existence of rare human CD8+CD3+TCR− cells with engraftment facilitating properties, the adoptive transfer of which could improve the therapeutic outcome of stem-cell transplantation.


1991 ◽  
Vol 100 (2) ◽  
pp. 329-337
Author(s):  
P. Andre ◽  
J. Gabert ◽  
A.M. Benoliel ◽  
C. Capo ◽  
C. Boyer ◽  
...  

We examined the influence of the intracytoplasmic region of CD8 alpha on capping and interaction with microfilaments. We used cell clones obtained by transfecting a CD4+ T-cell hybridoma with (a) T-cell receptor (TCR) alpha and beta chains from a cytolytic clone and (b) CD8 alpha genes that were either native or modified by extensive deletion of the intracytoplasmic region or replacement of the transmembrane and intracytoplasmic domains with those of a class I major histocompatibility complex gene (Letourneur et al. (1990). Proc. natn. Acad. Sci. U.S.A. 87, 2339–2343). Different cell surface structures were cross-linked with anti-T-cell receptor, anti-CD8 or anti-class I monoclonal antibodies and anti-immunoglobulin (Fab')2. Double labeling and quantitative image analysis were combined to monitor fluorescence anisotropy and correlation between different markers. Microfilaments displayed maximal polarization within two minutes. The correlation between these structures and surface markers was then maximal and started decreasing, whereas the redistribution of surface markers remained stable or continued. Furthermore, wild type and altered CD8 alpha exhibited similar ability to be capped and to induce co-capping of TCR and MHC (major histocompatibility complex) class I: the fraction of cell surface label redistributed into a localized cap ranged between 40% and 80%. Finally, cytochalasin D dramatically decreased CD8 capping in all tested clones. It is concluded that the transmembrane and/or intracellular domains of CD8 molecules are able to drive the extensive redistributions of membrane structures and cytoskeletal elements that are triggered by CD8 cross-linking.


Sign in / Sign up

Export Citation Format

Share Document